1
|
Kudo Y, Kumaki F, Nagasaka M, Adachi JI, Noguchi Y, Koga N, Itabashi H, Hiyama M. Experimental and Theoretical Study for Core Excitation of Firefly Luciferin in Carbon K-Edge Spectra. J Phys Chem A 2024; 128:611-617. [PMID: 38227306 DOI: 10.1021/acs.jpca.3c07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Carbon (C) K-edge X-ray absorption spectra for firefly luciferin were measured and assigned using time-dependent density functional theoretical calculations for luciferin anion and dianion to elucidate the effect of hydroxy-group deprotonation. It was found that the C K-edge spectra for luciferin had four characteristic peaks. The effect of deprotonation of the hydroxy group appears in the energy difference of the first and second peaks of these spectra. This energy difference is 1.0 eV at pH 7 and 2.3 eV at pH 10. The deprotonation of the hydroxy group can be distinguished based on the soft X-ray absorption spectra.
Collapse
Affiliation(s)
- Yuto Kudo
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Fumitoshi Kumaki
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | - Jun-Ichi Adachi
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yoshifumi Noguchi
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
2
|
Kumagai R, Ono R, Sakimoto S, Suzuki C, Kanno KI, Aoyama H, Usukura J, Kobayashi M, Akiyama H, Itabashi H, Hiyama M. Photo-cleaving and photo-bleaching quantum yields of coumarin-caged luciferin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Kumagai R, Ono R, Akiyama H, Itabashi H, Hiyama M. Photo-bleaching of Firefly Luciferin with UV Irradiation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Tang S, Cannon J, Yang K, Krummel MF, Baker JR, Choi SK. Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. J Org Chem 2020; 85:2945-2955. [PMID: 32020803 PMCID: PMC7293860 DOI: 10.1021/acs.joc.9b02617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its importance in the design of photocaged molecules, less attention is focused on linker chemistry than the cage itself. Here, we describe unique uncaging properties displayed by two coumarin-caged thymidine compounds, each conjugated with (2) or without (1) an extended, self-immolative spacer. Photolysis of 1 using long-wavelength UVA (365 nm) or visible (420, 455 nm) light led to the release of free thymidine along with the competitive generation of a thymidine-bearing recombination product. The occurrence of this undesired side reaction, which is previously unreported, was not present with the photolysis of 2, which released thymidine exclusively with higher quantum efficiency. We propose that the spatial separation between the cage and the substrate molecule conferred by the extended linker can play a critical role in circumventing this unproductive reaction. This report reinforces the importance of linker selection in the design of coumarin-caged oligonucleosides and other conjugates.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Kelly Yang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
6
|
Usukura J, Hiyama M, Kurata M, Hazama Y, Qiu XP, Winnik FM, Akiyama H, Koga N. Theoretical Study of the Wavelength Selection for the Photocleavage of Coumarin-caged D-luciferin. Photochem Photobiol 2020; 96:805-814. [PMID: 31907932 DOI: 10.1111/php.13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
The equilibrium structures and optical properties of the photolabile caged luciferin, (7-diethylaminocoumarin-4-yl)methyl caged D-luciferin (DEACM-caged D-luciferin), in aqueous solution were investigated via quantum chemical calculations. The probable conformers of DEACM-caged D-luciferin were determined by potential energy curve scans and structural optimizations. We identified 40 possible conformers of DEACM-caged D-luciferin in water by comparing the Gibbs free energy of the optimized structures. Despite the difference in their structures, the conformers were similar in terms of assignments, oscillator strengths and energies of the three low-lying excited states. From the concentrations of the conformers and their oscillator strengths, we obtained a theoretical UV/Vis spectrum of DEACM-caged D-luciferin that has two main bands of shape nearly identical to the experimental UV/Vis spectrum. The absorption bands with maxima ~ 384 and 339 nm were attributed to the electronic excitations of the caged group and the luciferin moiety, respectively, by analysis of the theoretical UV/Vis spectrum. Furthermore, the analysis showed that DEACM-caged D-luciferin is excited in the caged group only by light of wavelength ranging within 400-430 nm, which is in the long-wavelength tail of the 384 nm band. This should be tested to lower damage upon photocleavage.
Collapse
Affiliation(s)
- Junko Usukura
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Maki Kurata
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan
| | - Yuji Hazama
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Japan
| | - Xing-Ping Qiu
- Département de Chimie, Université de Montréal, Montréal, Canada
| | - Francoise M Winnik
- Department of Chemistry, University of Helsinki, Helsinki, Finland.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Hidefumi Akiyama
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|