1
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
2
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
3
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
4
|
Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell Tissue Res 2022; 387:177-205. [PMID: 35001210 DOI: 10.1007/s00441-021-03551-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
Retinal degenerative diseases such as retinitis pigmentosa (RP) are of the major causes of vision loss in developed countries. Despite the unclear pathophysiology, treatment methods have been investigated vastly in the past decades. This review article mainly discusses the advances in application of stem cell and progenitor transplantation for retinitis pigmentosa. Stem cell sources such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal progenitor cells, and olfactory ensheathing cells are discussed separately in addition to a brief description of two approaches for treatment of early-stage RP, including gene therapy and nutritional therapy.
Collapse
|
5
|
Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells 2021; 13:632-644. [PMID: 34249232 PMCID: PMC8246249 DOI: 10.4252/wjsc.v13.i6.632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
6
|
Koh AEH, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, Mohd Isa H, Then KY, Bastion MLC, Farhana A, Khursheed Alam M, Subbiah SK, Mok PL. Transplanted Erythropoietin-Expressing Mesenchymal Stem Cells Promote Pro-survival Gene Expression and Protect Photoreceptors From Sodium Iodate-Induced Cytotoxicity in a Retinal Degeneration Model. Front Cell Dev Biol 2021; 9:652017. [PMID: 33987180 PMCID: PMC8111290 DOI: 10.3389/fcell.2021.652017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munirah Binti Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chenshen Lam
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Hazlita Mohd Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
7
|
Koh AEH, Subbiah SK, Farhana A, Alam MK, Mok PL. Mitigation of Sodium Iodate-Induced Cytotoxicity in Retinal Pigment Epithelial Cells in vitro by Transgenic Erythropoietin-Expressing Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:652065. [PMID: 33937251 PMCID: PMC8082501 DOI: 10.3389/fcell.2021.652065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) have shown promise in restoring the vision of patients in clinical trials. However, this therapeutic effect is not observed in every treated patient and is possibly due to the inefficacies of cell delivery and high cell death following transplantation. Utilizing erythropoietin can significantly enhance the regenerative properties of MSCs and hence improve retinal neuron survivability in oxidative stress. Hence, this study aimed to investigate the efficacy of conditioned medium (CM) obtained from transgenic human erythropoietin-expressing MSCs (MSC EPO ) in protecting human retinal pigment epithelial cells from sodium iodate (NaIO3)-induced cell death. Human MSC and MSC EPO were first cultured to obtain conditioned media (CM). The IC50 of NaIO3 in the ARPE-19 culture was then determined by an MTT assay. After that, the efficacy of both MSC-CM and MSC-CM EPO in ARPE-19 cell survival were compared at 24 and 48 h after NaIO3 treatment with MTT. The treatment effects on mitochondrial membrane potential was then measured by a JC-1 flow cytometric assay. The MTT results indicated a corresponding increase in cell survivability (5-58%) in the ARPE-19 cell cultures. In comparison to MSC-CM, the use of conditioned medium collected from the MSC-CM EPO further enhanced the rate of ARPE-19 survivability at 24 h (P < 0.05) and 48 h (P < 0.05) in the presence of NaIO3. Furthermore, more than 90% were found viable with the JC-1 assay after MSC-CM EPO treatment, showing a positive implication on the mitochondrial dynamics of ARPE-19. The MSC-CM EPO provided an enhanced mitigating effect against NaIO3-induced ARPE-19 cell death over that of MSC-CM alone during the early phase of the treatment, and it may act as a future therapy in treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Zhao J, Yao L, Nie S, Xu Y. Low-viscosity sodium alginate combined with TiO 2 nanoparticles for improving neuroblastoma treatment. Int J Biol Macromol 2020; 167:921-933. [PMID: 33181214 DOI: 10.1016/j.ijbiomac.2020.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/20/2020] [Accepted: 11/07/2020] [Indexed: 01/29/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles have been explored to prevent various cancer developments but it may cause oxidation, inflammation and high cytotoxicity. Alginate has nontoxic, anti-inflammatory, and antioxidant effects. We aimed to explore the effects of alginate-TiO2 temozolomide (TMZ) nanoparticles on neuroblastoma. A neuroblastoma model was established with neuroblastoma cells and alginate-TiO2 TMZ nanoparticles were made by spraying low-viscosity sodium alginate (250-360 kDa). The morphology of nanoparticles was observed via scanning electron microscope (SEM). The crystallinity values were analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic study. Neuroblastoma mice were treated with saline solution, TMZ, TiO2-TMZ and alginate-TiO2-TMZ nanoparticles. Anti-oxidant, anti-inflammatory, and anti-tumor properties and the mouse survival rates were measured. The spectrometric profiles of alginate-TiO2 were consistent with those of TiO2 and alginate. Alginate-TiO2 TMZ nanoparticles had higher cytotoxicity toward neuroblastoma cells and less inhibitory activity toward normal neuronal cells. The combined nanoparticles increased antioxidant, anti-inflammatory and antitumor activities and prolonged the survival time of the neuroblastoma model (P < 0.05). On the other hand, Alginate-TiO2 TMZ nanoparticles reduced the levels of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). The combined nanoparticles improved neuroblastoma treatment by affecting NF-κB and MAPK signals.
Collapse
Affiliation(s)
- Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Liyu Yao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Shu Nie
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130000, China
| | - Yang Xu
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
9
|
Usategui-Martín R, Puertas-Neyra K, García-Gutiérrez MT, Fuentes M, Pastor JC, Fernandez-Bueno I. Human Mesenchymal Stem Cell Secretome Exhibits a Neuroprotective Effect over In Vitro Retinal Photoreceptor Degeneration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1155-1166. [PMID: 32514411 PMCID: PMC7267685 DOI: 10.1016/j.omtm.2020.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Retinal photoreceptor degeneration occurs frequently in several neurodegenerative retinal diseases such as age-related macular degeneration, retinitis pigmentosa, or genetic retinal diseases related to the photoreceptors. Despite the impact on daily life and the social and economic consequences, there is no cure for these diseases. Considering this, cell-based therapy may be an optimal therapeutic option. This study evaluated the neuroprotective in vitro potential of a secretome of human bone marrow mesenchymal stem cells (MSCs) for retinal photoreceptors in vitro. We analyzed the photoreceptor morphologic changes and the paracrine factors secreted by human bone marrow MSCs in a physically separated co-culture with degenerated neuroretinas, using organotypic neuroretinal cultures. The results showed that the secretome of human bone marrow MSCs had a neuroprotective effect over the neuroretinal general organization and neuropreserved the photoreceptors from degeneration probably by secretion of neuroprotective proteins. The study of the expression of 1,000 proteins showed increased paracrine factors secreted by MSCs that could be crucial in the neuroprotective effect of the stem cell secretome over in vitro retinal degeneration. The current results reinforce the hypothesis that the paracrine effect of the human bone marrow MSCs may slow photoreceptor neurodegeneration and be a therapeutic option in retinal photoreceptor degenerative diseases.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - María-Teresa García-Gutiérrez
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain.,Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, 47011 Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, 47011 Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 47011 Valladolid, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, 47011 Valladolid, Spain
| |
Collapse
|
10
|
Shahlaei M, Asl SM, Saeidifar M. Nanotechnology in gene delivery for neural regenerative medicine. NEURAL REGENERATIVE NANOMEDICINE 2020:123-157. [DOI: 10.1016/b978-0-12-820223-4.00005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|