1
|
de Souza Santos T, Lemos PVF, Santana JS, Anias FAS, de Jesus Assis D, Cardoso LG, Marcelino HR, de Souza EF, da Silva JBA, de Souza CO. Characterization of xanthan gum-metal complexes biosynthesized using a medium containing produced water and cassava processing residues. Int J Biol Macromol 2024:137229. [PMID: 39491695 DOI: 10.1016/j.ijbiomac.2024.137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The use of residues from petroleum and crop industries is a feasible and sustainable alternative approach for the production of xanthan gum (XG). This study aimed to evaluate the biosynthesis of XG and the resulting final product obtained using Xanthomonas axonopodis pv. manihotis 1182 in a medium containing produced water (PW) and cassava processing residues. The combined use of PW and cassava crop residues was beneficial for XG production, achieving a product yield of 6.80 g L-1. The micrographs of recovered XG revealed the presence of elongated fiber-like microstructures rather than large agglomerates. The X-ray diffraction profiles of recovered xanthan comprised well-defined peaks rather than an amorphous halo. The thermogravimetry profiles revealed the presence of approximately 60 % of remaining solids in recovered xanthan, in contrast to 30 % in the commercial sample. All the samples demonstrated a pseudoplastic behavior; however, the consistency indices of the recovered samples were approximately 50-times lower than those of commercial XG. The emulsification indices of the recovered XG were > 50 % and comparable to those of commercial xanthan. In this study, for the first time, we obtained a complex XG-metal structure possessing a high emulsification capacity and low viscosity.
Collapse
Affiliation(s)
- Thaís de Souza Santos
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Jamille Santos Santana
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Felipe Antônio Silva Anias
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Denílson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | | | - Ederlan Ferreira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Jania Betânia Alves da Silva
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
2
|
Amenaghawon AN, Igemhokhai S, Eshiemogie SA, Ugbodu F, Evbarunegbe NI. Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process. Heliyon 2024; 10:e25432. [PMID: 38322872 PMCID: PMC10845917 DOI: 10.1016/j.heliyon.2024.e25432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
In this study, the focus was to produce xanthan gum from pineapple waste using Xanthomonas campestris. Six machine learning models were employed to optimize fermentation time and key metabolic stimulants (KH2PO4 and NH4NO3). The production of xanthan gum was optimized using two evolutionary optimization algorithms, particle swarm optimization, and genetic algorithm while the importance of input features was ranked using global sensitivity analysis. KH2PO4 was the most important input and was found to be beneficial for xanthan gum production, while a limited amount of nitrogen was needed. The extreme learning machine model was the most adequate for modeling xanthan gum production, predicting a maximum xanthan yield of 10.34 g/l (an 11.9 % increase over the control) at a fermentation time of 3 days, KH2PO4 of 15 g/l, and NH4NO3 of 2 g/l. This study has provided important insights into the intelligent modeling of a biostimulated process for valorizing pineapple waste.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
- Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Favour Ugbodu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Nelson Iyore Evbarunegbe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Prasad S, Purohit SR. Microbial exopolysaccharide: Sources, stress conditions, properties and application in food and environment: A comprehensive review. Int J Biol Macromol 2023:124925. [PMID: 37236568 DOI: 10.1016/j.ijbiomac.2023.124925] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Microbial glucan or exopolysaccharides (EPS) have caught an eye of researchers from decades. The unique characteristics of EPS make it suitable for various food and environmental applications. This review overviews the different types of exopolysaccharides, sources, stress conditions, properties, characterization techniques and applications in food and environment. The yield and production condition of EPS is a major factor affecting the cost and its applications. Stress conditions are very important as it stimulates the microorganism for enhanced EPS production and affects its properties. As far as application is concerned specific properties of EPS such as, hydrophilicity, less oil uptake behavior, film forming ability, adsorption potential have applications in both food and environment sector. Novel and improved method of production, feed stock and right choice of microorganisms with stress conditions are critical for desired functionality and yield of the EPS.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
4
|
Dogan D, Erdem U, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Resorbable membrane design: In vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater 2023; 142:105887. [PMID: 37141744 DOI: 10.1016/j.jmbbm.2023.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this study, the production and characterization of silver-doped hydroxyapatite (AgHA) reinforced Xanthan gum (XG) and Polyethyleneimine (PEI) reinforced semi-interpenetrating polymer network (IPN) biocomposite, known to be used as bone cover material for therapeutic purposes in bone tissue, were performed. XG/PEI IPN films containing 2AgHA nanoparticles were produced by simultaneous condensation and ionic gelation. Characteristics of 2AgHA-XG/PEI nanocomposite film were evaluated by structural, morphological (SEM, XRD, FT-IR, TGA, TM, and Raman) and biological activity analysis (degradation, MTT, genotoxicity, and antimicrobial activity) techniques. In the physicochemical characterization, it was determined that 2AgHA nanoparticles were homogeneously dispersed in the XG/PEI-IPN membrane at high concentration and the thermal and mechanical stability of the formed film were high. The nanocomposites showed high antibacterial activity against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S.aureus), and Streptococcus mutans (S.mutans). L929 exhibited good biocompatibility for fibroblast cells and was determined to support the formation of MCC cells. It was shown that a resorbable 2AgHA-XG/PEI composite material was obtained with a high degradation rate and 64% loss of mass at the end of the 7th day. Physico-chemically developed biocompatible and biodegradable XG-2AgHA/PEI nanocomposite semi-IPN films possessed an important potential for the treatment of defects in bone tissue as an easily applicable bone cover. Besides, it was noted that 2AgHA-XG/PEI biocomposite could increase cell viability, especially in dental-bone treatments for coating, filling, and occlusion.
Collapse
Affiliation(s)
- Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, 71450, Turkey.
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, 19030, Turkey
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, 78050, Turkey
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, 14280, Turkey
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
5
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Li G, Zhao Y, Zhang J, Hao J, Xu D, Cao Y. CaCO3 loaded lipid microspheres prepared by the solid-in-oil-in-water emulsions technique with propylene glycol alginate and xanthan gum. Front Nutr 2022; 9:961326. [PMID: 36071930 PMCID: PMC9441954 DOI: 10.3389/fnut.2022.961326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium carbonate (CaCO3) is difficult to deliver in food matrices due to its poor solubility. In this work, CaCO3 powders were encapsulated into Solid-in-Oil-in-Water (S/O/W) emulsions to fabricate delivery systems. The impact of the concentrations of propylene glycol alginate and Xanthan gum (PGA-XG) complexes on the physical stability and structural characteristics of S/O/W calcium-lipid emulsions microspheres were studied. The S/O/W calcium-lipid emulsions were characterized by the particle size, zeta potential, physical stability, and apparent viscosity. The S/O/W calcium-lipid emulsion has higher physical stability (including 6-week storage at 4°C), smaller mean particle size (7.60 ± 1.10 μm), and higher negative zeta-potential (45.91 ± 0.97 mV) when the concentration of PGA-XG complexes was 0.8 wt%. Moreover, Confocal laser scanning microscopy (CLSM) images confirmed that the CaCO3 powders were encapsulated in the O phase. Transmission electron microscopy (TEM) showed that S/O/W calcium-lipid emulsion was spherical. The X-ray diffraction (XRD) analysis further confirmed that CaCO3 was loaded in the S/O/W calcium-lipid emulsion as an amorphous state. The formation mechanism of S/O/W calcium-lipid microspheres was studied by Fourier transform infrared spectroscopy (FTIR) and Raman spectrum analysis. This study provided new ideas that accelerate the creation of a novel type of calcium preparation with higher quality utilization.
Collapse
|
7
|
Ribeiro ES, Munhoz AP, Molon BDO, Molon BDO, Farias BSD, Junior TRSC, Pinto LADA, Diaz PS. Screening Among 8 Pathovars of Xanthomonas arboricola pv pruni. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eduardo Silveira Ribeiro
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Adriel Penha Munhoz
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bianca de Oliveira Molon
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna de Oliveira Molon
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande Rio Grande, Porto Alegre, Brazil
| | | | | | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
- Departament of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| |
Collapse
|
8
|
Knuth RD, Knuth FA, Maron GK, Balboni RDC, Moreira ML, Raubach CW, Jardim PLG, Carreno NLV, Avellaneda CO, Moreira EC, Cava SS. Development of xanthan gum‐based solid polymer electrolytes with addition of expanded graphite nanosheets. J Appl Polym Sci 2022. [DOI: 10.1002/app.52400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rogerio Daltro Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Flávio A. Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Guilherme K. Maron
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Postgraduate Program in Biotechnology, Technology Development Center Federal University of Pelotas Capão do Leão Rio Grande do Sul Brazil
| | - Raphael D. C. Balboni
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Mario L. Moreira
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Cristiane W. Raubach
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Pedro L. G. Jardim
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Neftali L. V. Carreno
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - César O. Avellaneda
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Eduardo C. Moreira
- Department of Physics Federal University of Pampa Bagé Rio Grande do Sul Brazil
| | - Sérgio S. Cava
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
9
|
Sampaio ICF, Jorge Louro Crugeira P, de Azevedo Santos Ferreira J, Nunes Dos Santos J, Borges Torres Lima Matos J, Luiz Barbosa Pinheiro A, Chinalia FA, Fernando de Almeida P. Up-recycling oil produced water as the media-base for the production of xanthan gum. Biopolymers 2022; 113:e23488. [PMID: 35338709 DOI: 10.1002/bip.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Produced water (PW) and crude glycerin (CG) are compounds overproduced by the oil and biodiesel industry and significant scientific efforts are being applied for properly recycling them. The aim of this research is to combine such industrial byproducts for sustaining the production of xanthan by Xanthomonas campestris. Xanthan yields and viscosity on distinct PW ratios (0, 10, 15, 25, 50, 100) and on 100% dialyzed PW (DPW) in shaker batch testing identified DPW treatment as the best approach for further bioreactor experiments. Such experiments showed a xanthan yield of 17.3 g/L within 54 h and a viscosity of 512 mPa s. Physical-chemical characterization (energy dispersive X-ray spectroscopy, scanning electron microscopy and Raman spectroscopy) showed similarities between the produced gum and the experimental control. This research shows a clear alternative for upcycling high salinity PW and CG for the generation of a valued bioproduct for the oil industry.
Collapse
Affiliation(s)
- Igor Carvalho Fontes Sampaio
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | | | - Jacson Nunes Dos Santos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Josilene Borges Torres Lima Matos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Fabio Alexandre Chinalia
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Paulo Fernando de Almeida
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
10
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
11
|
Crugeira PJL, de Almeida PF, Sampaio ICF, Soares LGP, Moraga Amador DA, Samuel IDW, Persheyev S, Silveira L, Pinheiro ALB. Production and viscosity of Xanthan Gum are increased by LED irradiation of X. campestris cultivated in medium containing produced water of the oil industry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112356. [PMID: 34801926 DOI: 10.1016/j.jphotobiol.2021.112356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Oil recovery is a challenge and microbial enhanced oil recovery is an option. We theorized that the use of produced water (PW) with photo-stimulation could influence both production and viscosity of Xanthan gum. This study aimed at the evaluation of the effect of photo-stimulation by λ630 ± 1 ηm LED light on the biosynthesis of Xanthan gum produced by Xanthomonas campestris IBSBF 2103 strain reusing PW of the oil industry. We assessed the effect of photo-stimulation by LED light (λ630 nm) on the biosynthesis of Xanthan gum produced by X. campestris in medium containing produced water. Different energy densities applied during the microbial growth phase were tested. The highest production was achieved when using 12 J/cm2 LED light (p < 0.01). Three protocols were assessed: Non-irradiated (Control), Irradiation with LED light during the growth phase (LEDgrowth) and Irradiation with LED light during both growth and production phases (LED growth+production). Both the amount and viscosity of the xanthan gum was significantly higher (p < 0.01) in the group LEDgrowth+production. The study showed that LED irradiation (λ630 ± 1 ηm) during both the growth and production phases of the biopolymer increased both the production and viscosity of Xanthan gum.
Collapse
Affiliation(s)
- Pedro J L Crugeira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP: 40110-100, Brazil.
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP: 40110-100, Brazil.
| | - Igor C F Sampaio
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP: 40110-100, Brazil.
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - David A Moraga Amador
- NextGen DNA Sequencing Scientific Director, UF-ICBR, Bldg CGRC, Room 178, 2033 Mowry Road, Gainesville, FL 32610, United States.
| | - Ifor D W Samuel
- University of St Andrews UK, School of Physics & Astronomy, Physical Science Building, North Haugh, St Andrews, Fife KY16 9SS, United Kingdom.
| | - Saydulla Persheyev
- University of St Andrews UK, School of Physics & Astronomy, Physical Science Building, North Haugh, St Andrews, Fife KY16 9SS, United Kingdom.
| | - Landulfo Silveira
- Center for Innovation, Technology and Education - CITE, Universidade Anhembi Morumbi - UAM, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP CEP: 12247-016, Brazil.
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
12
|
Gouda M, Huang Z, Liu Y, He Y, Li X. Physicochemical impact of bioactive terpenes on the microalgae biomass structural characteristics. BIORESOURCE TECHNOLOGY 2021; 334:125232. [PMID: 33965853 DOI: 10.1016/j.biortech.2021.125232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to evaluate the functionality of bioactive terpenes on Spirulina (Arthrospira platensis; AP) and Chlorella (Chlorella vulgaris; CV) biomasses. The two microalgae species were treated with 0.01%, 0.05%, and 0.1% of thymol (THY), trans-cinnamaldehyde (TC), menthol (MEN), and vanillin (VAN). Raman micro-spectroscopy (RMS) was correlated with other physicochemical methods to confirm their functional mechanisms. In results, THY (0.1%) decreased (P < 0.05) RMS intensity at 1196 cm-1 that represents the protein's secondary amines wavenumber. Also, VAN (0.1%) decreased significantly A. platensis α-helix to 16.60 ± 0.52% compared to the control with 19.83 ± 0.32%. While, 0.1% TC increased (P < 0.05) the viscosity to 2.52 ± 0.61 Pa.s. This work demonstrated that terpenes could differently affect the physicochemical structure of microalgae biomass. The RMS's uniqueness comes from its ability to evaluate the functionality of terpenes during microalgae cultivation. Besides, chemometrics led to focus on the most important variances.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, Egypt.
| | - Zhenxiong Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|