1
|
Lauria G, Ceccanti C, Lo Piccolo E, El Horri H, Guidi L, Lawson T, Landi M. "Metabolight": how light spectra shape plant growth, development and metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14587. [PMID: 39482564 DOI: 10.1111/ppl.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/03/2024]
Abstract
Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.
Collapse
Affiliation(s)
- Giulia Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Hafsa El Horri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Baimler IV, Simakin AV, Dikovskaya AO, Voronov VV, Uvarov OV, Smirnov AA, Sibirev AV, Dorokhov AS, Gudkov SV. Fabrication and growth mechanism of t-selenium nanorods during laser ablation and fragmentation in organic liquids. Front Chem 2024; 12:1449570. [PMID: 39371596 PMCID: PMC11449723 DOI: 10.3389/fchem.2024.1449570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The process of forming selenium nanoparticles with various shapes and structures through laser ablation and fragmentation in various solvents has been explored. Methods Laser ablation and laser fragmentation techniques were employed using nanosecond Nd:YAG second harmonic laser irradiation in 9 different working fluids, including water. The characteristics of the resulting nanoparticles were assessed using transmission electron microscopy (TEM), dynamic light scattering (DLS), spectroscopy, and X-ray diffraction (XRD) methods. Results Laser ablation and subsequent laser fragmentation of some organic solvents, such as ethanol, propanol-2, isobutanol, polyethylene glycol, and diethanolamine, have been found to produce trigonal selenium in the form of elongated nanorods approximately 1 μm long and 200 nm thick, with a well-defined crystal structure. In contrast, the use of deionized water, acetone, glycerol, and benzene as solvents results in the formation of spherical amorphous nanoparticles approximately 100 nm in diameter. Discussion The polarity of the solvent molecules has been shown to influence the growth of crystalline selenium nanorods in solution during laser ablation and laser fragmentation. Generally, polar solvents hinder the growth of crystalline nanorods, due to interactions between selenium and solvent molecules. Nonpolar solvents, on the other hand, allow for laser fragmentation to reduce particle size and initiate the epitaxial growth of elongated, crystalline selenium nanorods.
Collapse
Affiliation(s)
- Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Valery V. Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Smirnov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Moscow, Russia
| | - Alexey V. Sibirev
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Moscow, Russia
| | - Alexey S. Dorokhov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| |
Collapse
|
3
|
Simakin AV, Baimler IV, Dikovskaya AO, Kazantseva DV, Yanykin DV, Voronov VV, Uvarov OV, Astashev ME, Sarimov RM, Ivanov VE, Bruskov VI, Kozlov VA. Laser fragmentation of amorphous and crystalline selenium of various morphologies and assessment of their antioxidant and protection properties. Front Chem 2024; 12:1459477. [PMID: 39185370 PMCID: PMC11341537 DOI: 10.3389/fchem.2024.1459477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: The process of laser-induced breakdown of amorphous and crystalline selenium nanoparticles (Se NPs) of various shapes during nanosecond laser fragmentation of aqueous colloidal solutions of nanoparticles with different concentrations has been studied. Methods: The methods of studying the characteristics of plasma and acoustic oscillations induced by optical breakdown are applied. The methods of assessing the concentration of hydrogen peroxide and hydroxyl radicals, the amount of long-lived reactive species of protein and 8-oxoguanine are applied. Results: It has been established that in the process of laser fragmentation of selenium nanoparticles at a wavelength of 532 nm, corresponding to the maximum absorption of selenium, the highest probability of breakdown, the number of plasma flashes, their luminosity and the amplitude of acoustic signals are achieved at concentrations of the order of 109 NPs/mL. It has been shown that the use of selenium nanoparticles of various shapes and structures leads to a change in the photoacoustic signal during laser-induced breakdown. When crystalline selenium nanoparticles are irradiated, the intensity of the photoacoustic response during breakdown turns out to be greater (1.5 times for flash luminosity and 3 times for acoustics) than when amorphous particles are irradiated at the same concentration. It has been shown that selenium nanoparticles exhibit significant antioxidant properties. Selenium nanoparticles effectively prevent the formation of reactive oxygen species (ROS) during water radiolysis, eliminate radiation-induced long-lived reactive species of protein, and reduce the radiation-chemical yield of a key marker of oxidative DNA damage - 8-oxoguanine. Discussion: In general, the intensity of processes occurring during laser fragmentation of amorphous and crystalline selenium nanoparticles differs significantly. The antioxidant properties are more pronounced in amorphous selenium nanoparticles compared to crystalline selenium nanoparticles.
Collapse
Affiliation(s)
- Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dina V. Kazantseva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V. Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E. Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Vadim I. Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valeriy A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Shoji S, Saito H, Jitsuyama Y, Tomita K, Haoyang Q, Sakurai Y, Okazaki Y, Aikawa K, Konishi Y, Sasaki K, Fushimi K, Kitagawa Y, Suzuki T, Hasegawa Y. Plant growth acceleration using a transparent Eu 3+-painted UV-to-red conversion film. Sci Rep 2022; 12:17155. [PMID: 36289255 PMCID: PMC9605945 DOI: 10.1038/s41598-022-21427-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023] Open
Abstract
The stimulation of photosynthesis is a strategy for achieving sustainable plant production. Red light is useful for plant growth because it is absorbed by chlorophyll pigments, which initiate natural photosynthetic processes. Ultraviolet (UV)-to-red wavelength-converting materials are promising candidates for eco-friendly plant cultures that do not require electric power. In this study, transparent films equipped with a UV-to-red wavelength-converting luminophore, the Eu3+ complex, were prepared on commercially available plastic films for plant growth experiments. The present Eu3+-based films absorb UV light and exhibit strong red luminescence under sunlight. Eu3+-painted films provide significant growth acceleration with size increment and biomass production for vegetal crops and trees in a northern region. The plants cultured with Eu3+-painted films had a 1.2-fold height and 1.4-fold total body biomass than those cultures without the Eu3+ luminophores. The present film can promote the plant production in fields of agriculture and forestry.
Collapse
Affiliation(s)
- Sunao Shoji
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Hideyuki Saito
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Yutaka Jitsuyama
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kotono Tomita
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Qiang Haoyang
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Yukiho Sakurai
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Yuhei Okazaki
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kota Aikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8626, Japan
| | - Yuki Konishi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8626, Japan
| | - Kensei Sasaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8626, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takashi Suzuki
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
5
|
Shen L, Yin X. Solar spectral management for natural photosynthesis: from photonics designs to potential applications. NANO CONVERGENCE 2022; 9:36. [PMID: 35930145 PMCID: PMC9356122 DOI: 10.1186/s40580-022-00327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is the most important biological process on Earth that converts solar energy to chemical energy (biomass) using sunlight as the sole energy source. The yield of photosynthesis is highly sensitive to the intensity and spectral components of light received by the photosynthetic organisms. Therefore, photon engineering has the potential to increase photosynthesis. Spectral conversion materials have been proposed for solar spectral management and widely investigated for photosynthesis by modifying the quality of light reaching the organisms since the 1990s. Such spectral conversion materials manage the photon spectrum of light by a photoconversion process, and a primary challenge faced by these materials is increasing their efficiencies. This review focuses on emerging spectral conversion materials for augmenting the photosynthesis of plants and microalgae, with a special emphasis on their fundamental design and potential applications in both greenhouse settings and microalgae cultivation systems. Finally, a discussion about the future perspectives in this field is made to overcome the remaining challenges.
Collapse
Affiliation(s)
- Lihua Shen
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Plant Photochemistry under Glass Coated with Upconversion Luminescent Film. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been shown that the cultivation of plants under glass coated with nano-sized upconversion luminophores led to an increase in plant productivity and the acceleration of plant adaptation to ultraviolet radiation. In the present work, we examined the effect of upconversion nanopowders with the nominal composition Sr0.955Yb0.020Er0.025F2.045 on plant (Solanum lycopersicum) photochemistry. The composition, structure and size of nanoparticles were tested using X-ray pattern diffraction, scanning electron microscopy, and dynamic light scattering. Nanoparticles are capable of converting infrared radiation into red and green photons. Glasses coated with upconversion luminophores increase the intensity of photosynthetically active radiation and absorb the ultraviolet and far-red radiation. The chlorophyll a fluorescence method showed that plants growing under photoconversion and those growing under common film demonstrate different ability to utilize excitation energy via photosynthesis. It was shown that under ultraviolet and high light conditions, the efficiency of the photochemical reactions, the non-photochemical fluorescence quenching, and the electron transport remained relatively stable in plants growing under photoconversion film in contrast to plants growing under common film. Thus, cultivation of Solanum lycopersicum under photoconversion glasses led to the acceleration in plant growth due to greater efficiency of plant photochemistry under stress conditions.
Collapse
|
7
|
Abstract
Nanocomposites based on polymers and nanoparticles are used in agriculture for photoconversion of solar radiation, as a basis for covering material, as a packaging material, and as functional films. At the same time, nanocomposites are almost never used in agriculture as biosafe structural materials. In this work, we have developed a technology for obtaining a nanocomposite based on PLGA and iron oxide nanoparticles. The nanocomposite has unique physical and chemical properties and also exhibits pronounced antibacterial properties at a concentration of iron oxide nanoparticles of more than 0.01%. At the same time, the nanocomposite does not affect the growth and development of pepper and is biocompatible with mammalian cells. Nanocomposites based on PLGA and iron oxide nanoparticles can be an attractive candidate for the manufacture of structural and packaging materials in agriculture.
Collapse
|
8
|
Effect of Photoconversion Coatings for Greenhouses on Electrical Signal-Induced Resistance to Heat Stress of Tomato Plants. PLANTS 2022; 11:plants11020229. [PMID: 35050117 PMCID: PMC8779642 DOI: 10.3390/plants11020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
The use of photoconversion coatings is a promising approach to improving the quality of light when growing plants in greenhouses in low light conditions. In this work, we studied the effect of fluoropolymer coatings, which produce photoconversion of UV-A radiation and violet light into blue and red light, on the growth and resistance to heat stress of tomato plants (Solanum lycopersicum L.). The stimulating effect of the spectrum obtained as a result of photoconversion on plant growth and the activity of the photosynthesis process are shown. At the same time, the ability to withstand heat stress is reduced in plants grown under a photoconversion coating. Stress electrical signals, which normally increase resistance, in such plants have a much weaker protective effect on the photosynthetic apparatus. The observed effects are apparently explained by a decrease in the concentration of H2O2 in plants grown using photoconversion technologies, which leads to a shift in the development program towards increased productivity to the detriment of the protective function. Thus, when using photoconversion technologies in agricultural practice, it is necessary to pay increased attention to maintaining stable conditions during plant cultivation.
Collapse
|
9
|
Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of upconverting luminescent nanoparticles coated on glass on the productivity of Solanum lycopersicum was studied. The cultivation of tomatoes under photoconversion glass led to an increase in plant productivity and an acceleration of plant adaptation to ultraviolet radiation. An increase in the total leaf area and chlorophyll content in the leaves was revealed in plants growing under the photoconversion glass. Plants growing under the photoconversion glass were able to more effectively utilize the absorbed light energy. The results of this study suggest that the spectral changes induced by photoconversion glass can accelerate the adaptation of plants to the appearance of ultraviolet radiation.
Collapse
|
10
|
Burmistrov DE, Yanykin DV, Paskhin MO, Nagaev EV, Efimov AD, Kaziev AV, Ageychenkov DG, Gudkov SV. Additive Production of a Material Based on an Acrylic Polymer with a Nanoscale Layer of Zno Nanorods Deposited Using a Direct Current Magnetron Discharge: Morphology, Photoconversion Properties, and Biosafety. MATERIALS 2021; 14:ma14216586. [PMID: 34772111 PMCID: PMC8585381 DOI: 10.3390/ma14216586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
On the basis of a direct current magnetron, a technology has been developed for producing nanoscale-oriented nanorods from zinc oxide on an acrylic polymer. The technology makes it possible to achieve different filling of the surface with zinc oxide nanorods. The nanorods is partially fused into the polymer; the cross section of the nanorods is rather close to an elongated ellipse. It is shown that, with intense abrasion, no delamination of the nanorods from the acrylic polymer is observed. The zinc oxide nanorods abrades together with the acrylic polymer. Zinc oxide nanorods luminesces with the wavelength most preferable for the process of photosynthesis in higher plants. It was shown that plants grown under the obtained material grow faster and gain biomass faster than the control group. In addition, it was found that on surfaces containing zinc oxide nanorods, a more intense formation of such reactive oxygen species as hydrogen peroxide and hydroxyl radical is observed. Intensive formation of long-lived, active forms of the protein is observed on the zinc oxide coating. The formation of 8-oxoguanine in DNA in vitro on a zinc oxide coating was shown using ELISA method. It was found that the multiplication of microorganisms on the developed material is significantly hampered. At the same time, eukaryotic cells of animals grow and develop without hindrance. Thus, the material we have obtained can be used in photonics (photoconversion material for greenhouses, housings for LEDs), and it is also an affordable and non-toxic nanomaterial for creating antibacterial coatings.
Collapse
Affiliation(s)
- Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Mark O. Paskhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Egor V. Nagaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Alexey D. Efimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Andrey V. Kaziev
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Dmitry G. Ageychenkov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
- Correspondence:
| |
Collapse
|
11
|
Gudkov SV, Simakin AV, Sarimov RM, Kurilov AD, Chausov DN. Novel Biocompatible with Animal Cells Composite Material Based on Organosilicon Polymers and Fullerenes with Light-Induced Bacteriostatic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2804. [PMID: 34835569 PMCID: PMC8625234 DOI: 10.3390/nano11112804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules did not lose the main rheological properties of borsiloxane and is capable of structural self-healing. The resulting nanomaterial is capable of generating reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radicals in light. The rate of ROS generation increases with an increase in the concentration of fullerene molecules. In the absence of light, the nanocomposite exhibits antioxidant properties. The severity of antioxidant properties is also associated with the concentration of fullerene molecules in the polymer. It has been shown that the nanocomposite upon exposure to visible light leads to the formation of long-lived reactive protein species, and is also the reason for the appearance of such a key biomarker of oxidative stress as 8-oxoguanine in DNA. The intensity of the process increases with an increase in the concentration of fullerene molecules. In the dark, the polymer exhibits weak protective properties. It was found that under the action of light, the nanocomposite exhibits significant bacteriostatic properties, and the severity of these properties depends on the concentration of fullerene molecules. Moreover, it was found that bacterial cells adhere to the surfaces of the nanocomposite, and the nanocomposite can detach bacterial cells not only from the surfaces, but also from wetted substrates. The ability to capture bacterial cells is primarily associated with the properties of the polymer; they are weakly affected by both visible light and fullerene molecules. The nanocomposite is non-toxic to eukaryotic cells, the surface of the nanocomposite is suitable for eukaryotic cells for colonization. Due to the combination of self-healing properties, low cytotoxicity, and the presence of bacteriostatic properties, the nanocomposite can be used as a reusable dry disinfectant, as well as a material used in prosthetics.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St., 38, 119991 Moscow, Russia; (A.V.S.); (R.M.S.); (A.D.K.); (D.N.C.)
| | | | | | | | | |
Collapse
|
12
|
Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine. PHOTONICS 2021. [DOI: 10.3390/photonics8090390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Automation of milking systems is linked to accurate measurement of fluctuations in milk flow during milking. To assess the fluctuations of the milk flow, the formation and movement of milk portions in the milking machine-milk pipeline system was studied. By considering the movement of a milk plug along the milk pipeline, a hydraulic model of the formation of a critical volume of milk in the milking machine manifold was compiled. In practice, the most expedient way of determining milk flow parameters may be to measure the laser fluorescent and extinction responses of moving air-milk mixture. We have implemented a new laser sensing method for measuring the flow rate and composition of milk on the basis of counting the optical response pulses received from moving dispersed components by a CCD array or a randomized fiber optic bundle. Using the developed laser sensors, the theoretical model of milk flow was tested.
Collapse
|
13
|
Development of Quantum Dot (QD) Based Color Converters for Multicolor Display. NANOMATERIALS 2021; 11:nano11051089. [PMID: 33922440 PMCID: PMC8145343 DOI: 10.3390/nano11051089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Many displays involve the use of color conversion layers. QDs are attractive candidates as color converters because of their easy processability, tuneable optical properties, high photoluminescence quantum yield, and good stability. Here, we show that emissive QDs with narrow emission range can be made in-situ in a polymer matrix, with properties useful for color conversion. This was achieved by blending the blue-emitting pyridine based polymer with a cadmium selenide precursor and baking their films at different temperatures. To achieve efficient color conversion, blend ratio and baking temperature/time were varied. We found that thermal decomposition of the precursor leads to highly emissive QDs whose final size and emission can be controlled using baking temperature/time. The formation of the QDs inside the polymer matrix was confirmed through morphological studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Hence, our approach provides a cost-effective route to making highly emissive color converters for multi-color displays.
Collapse
|
14
|
Photoconversion Fluoropolymer Films for the Cultivation of Agricultural Plants Under Conditions of Insufficient Insolation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plants are capable of using mainly the quanta of the red and blue parts of a spectrum for the reception of energy during photosynthesis. However, for many crops grown indoors in high latitudes or under conditions of insufficient insolation, the average daily intensity of the red and blue parts of the spectrum is usually sufficient only on clear summer days. A technology has been proposed to produce a photoconversion fluoropolymer film for greenhouses, which is based on the modification of fluoropolymer by nanoparticles with fluorescence in the blue or red part of the spectrum (quantum dots). The films are capable of converting UV and violet radiation into the blue and red region of the visible spectrum, the most important for plants. It has been shown that the use of photoconversion fluoropolymer films promotes biomass growth. The area of cucumber leaves grown under photoconversion films increases by 20%, pumpkins by 25%, pepper by 30%, and tomatoes by 55%. The use of photoconversion fluoropolymer films for greenhouses also allows obtaining 15% more fruit biomass from one bush. In general, the use of photoconversion fluoropolymer films may be in great demand for greenhouses lying in high latitudes and located in areas with insufficient insolation.
Collapse
|