1
|
Chen X, Chen G, Dong S, Qiu L, Qiu R, Han X, Wang Z, Wang K, Peng Y. Trifluoromethyl-pyrrolidone phthalocyanine nanoparticles for targeted lipid droplet imaging and in vitro photodynamic therapy in breast cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125012. [PMID: 39236573 DOI: 10.1016/j.saa.2024.125012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Lipid droplets (LDs) serve as vital subcellular organelles, crucial for the maintenance of lipid and energy homeostasis within cells. Their visualization is of significant value for elucidating the intricate interactions between LDs and other cellular organelles. Despite the importance of LDs, the literature on the utilization of phthalocyanine-based photosensitizers for targeted LD imaging and two-photon imaging-guided photodynamic therapy (PDT) remains sparse. In this study, we have designed and synthesized trifluoromethyl-pyrrolidone silicon phthalocyanine (PyCF3SiPc). To enhance the water solubility of PyCF3SiPc and improve its tumor cells accumulation, we employed 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-mPEG2000) as a nanocarrier, thereby formulating DSPE@PyCF3SiPc nanoparticles. Our in vitro experiments in MCF-7 cells demonstrated that DSPE@PyCF3SiPc selectively targets and visualizes LDs, offering a reliable tool for tracking their dynamic movement. Moreover, DSPE@PyCF3SiPc demonstrates considerable phototoxicity against MCF-7 cells subjected to PDT underscoring its potential as an effective therapeutic agent. In conclusion, DSPE@PyCF3SiPc presents itself as a promising novel probe for the dual purpose of monitoring the dynamic movement of LDs and guiding imaging-assisted PDT. The development of this nanoparticle system not only advances our understanding of LD biology but also paves the way for innovative therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Xiuqin Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China; Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Liting Qiu
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Ruoyi Qiu
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiangyu Han
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Zihui Wang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Kun Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China.
| | - Yiru Peng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
2
|
Wu H, Liu G, Chen K, Zhang T, Ye Q, Chen J, Peng Y. A piperazine-substituted phthalocyanine with rapid cellular uptake and dual organelle-targeting for in vitro photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103818. [PMID: 37788794 DOI: 10.1016/j.pdpdt.2023.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The rational design of photosensitizers with rapid cellular uptake and dual-organelle targeting ability is essential for enhancing the efficacy of photodynamic therapy (PDT). However, achieving this goal is a great challenge. In this paper, a novel axial piperazine substituted (PIP) silicon phthalocyanine (PIP-SiPc) has been synthesized. The PIP substitution significantly improved the cellular uptake of PIP-SiPc in MCF-7 breast cancer cells, as demonstrated by two-photon fluorescence imaging combined with fluorescence correlation spectroscopy. Additionally, PIP-SiPc was able to target both mitochondria and lysosomes simultaneously. Notably, PIP-SiPc exhibited remarkable singlet oxygen generation ability, leading to apoptosis in cancer cells upon irradiation, with an IC50 value of only 0.2 µM. These findings highlight the effectiveness of PIP-SiPc as a multifunctional photosensitizer for PDT.
Collapse
Affiliation(s)
- Haijian Wu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Guowei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Kuizhi Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Tiantian Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Qiuhao Ye
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou, China.
| | - Yiru Peng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
3
|
Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Synthesis and characterization of novel Schiff base-silicon (IV) phthalocyanine complex for photodynamic therapy of breast cancer cell lines. Photodiagnosis Photodyn Ther 2023; 42:103504. [PMID: 36907257 DOI: 10.1016/j.pdpdt.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Photodynamic therapy is an alternative anticancer treatment approach that promises high therapeutic efficacy. In this study, it is aimed to investigate the PDT-mediated anticancer effects of newly synthesized silicon phthalocyanine (SiPc) molecules on MDA-MB-231, MCF-7 breast cancer cell lines, and non-tumorigenic MCF-10A breast cell line. METHODS Novel bromo substituted Schiff base (3a), its nitro homolog (3b), and their silicon complexes (SiPc-5a and SiPc-5b) were synthesized. Their proposed structures were confirmed by FT-IR, NMR, UV-vis and MS instrumental techniques. MDA-MB-231, MCF-7 and MCF-10A cells were illuminated at a light wavelength of 680 nm for 10 min, giving a total irradiation dose of 10 j/cm2. MTT assay was used to determine the cytotoxic effects of SiPc-5a and SiPc-5b. Apoptotic cell death was analyzed using flow cytometry. Changes in the mitochondrial membrane potential were determined by TMRE staining. Intracellular ROS generation was observed microscopically using H2DCFDA dye. Colony formation assay and in vitro scratch assay were performed to analyze the clonogenic activity and cell motility. Transwell migration and matrigel invasion analyzes were conducted to observe changes in the migration and invasion status of the cells. RESULTS The combination of SiPc-5a and SiPc-5b with PDT exhibited cytotoxic effects on cancer cells and triggered cell death. SiPc-5a/PDT and SiPc-5b/PDT decreased mitochondrial membrane potential and increased intracellular ROS production. Statistically significant changes were detected in cancer cells' colony-forming ability and motility. SiPc-5a/PDT and SiPc-5b/PDT reduced cancer cells' migration and invasion capacities. CONCLUSION The present study identifies PDT-mediated antiproliferative, apoptotic, and anti-migratory characteristics of novel SiPc molecules. The outcomes of this study emphasize the anticancer properties of these molecules and suggest that they may be evaluated as drug-candidate molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Ceren Sarı
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Değirmencioğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
4
|
Nichugovskiy A, Maksimova V, Trapeznikova E, Eshtukova-Shcheglova E, Ivanov I, Yakubovskaya M, Kirsanov K, Cheshkov D, Tron GC, Maslov M. Synthesis of Novel Lipophilic Polyamines via Ugi Reaction and Evaluation of Their Anticancer Activity. Molecules 2022; 27:molecules27196218. [PMID: 36234753 PMCID: PMC9572921 DOI: 10.3390/molecules27196218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Natural polyamines (PAs) are involved in the processes of proliferation and differentiation of cancer cells. Lipophilic synthetic polyamines (LPAs) induce the cell death of various cancer cell lines. In the current paper, we have demonstrated a new method for synthesis of LPAs via the multicomponent Ugi reaction and subsequent reduction of amide groups by PhSiH3. The anticancer activity of the obtained compounds was evaluated in the A-549, MCF7, and HCT116 cancer cell lines. For the first time, it was shown that the anticancer activity of LPAs with piperazine fragments is comparable with that of aliphatic LPAs. The presence of a diglyceride fragment in the structure of LPAs appears to be a key factor for the manifestation of high anticancer activity. The findings of the study strongly support further research in the field of LPAs and their derivatives.
Collapse
Affiliation(s)
- Artemiy Nichugovskiy
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia
- Correspondence: (A.N.); (M.M.)
| | - Varvara Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, 23 Kashirskoe Sh., 115478 Moscow, Russia
| | - Ekaterina Trapeznikova
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Elizaveta Eshtukova-Shcheglova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia
| | - Marianna Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, 23 Kashirskoe Sh., 115478 Moscow, Russia
| | - Kirill Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 23 Kashirskoe Sh., 115478 Moscow, Russia
- Institute of Medicine, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Dmitry Cheshkov
- State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 38 Shosse Entuziastov, 105118 Moscow, Russia
| | - Gian Cesare Tron
- Dipartimento di Scienza del Farmaco, Università del Piemonte Orientale, 2 Largo Donegani, 28100 Novara, Italy
| | - Mikhail Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia
- Correspondence: (A.N.); (M.M.)
| |
Collapse
|
5
|
Değirmencioğlu İ, İren K, Yalçin İ, Göl C, Durmuş M. Synthesis of axially disubstituted silicon(IV) phthalocyanines and investigation of their photophysical and photochemical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Nalçaoğlu A, Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Novel piperazine-substituted silicon phthalocyanines exert anti-cancer effects against breast cancer cells. Photodiagnosis Photodyn Ther 2022; 37:102734. [DOI: 10.1016/j.pdpdt.2022.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
7
|
Khezami K, Harmandar K, Bağda E, Bağda E, Şahin G, Karakodak N, Durmuş M. BSA/DNA binding behavior and the photophysicochemical properties of novel water soluble zinc(II)phthalocyanines directly substituted with piperazine groups. J Biol Inorg Chem 2021; 26:455-465. [PMID: 33944997 DOI: 10.1007/s00775-021-01868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
In the current research, two novel zinc(II) phthalocyanines (ZnPcs) (1 and 2) directly connecting with 4-(4-methylpiperazin-1-yl)phenyl groups have been synthesized through the Suzuki-Miyaura coupling reaction. These ZnPcs 1 and 2 were converted to their water-soluble derivatives (1Q and 2Q) by quaternization. The photochemical and photophysical properties were determined in DMSO for the non-ionic zinc(II) phthalocyanines (1 and 2) and in both DMSO and aqueous solutions for the quaternized cationic derivatives (1Q and 2Q) to establish their photosensitizer capabilities in photodynamic therapy (PDT). The spectrofluorometric and spectrophotometric techniques were employed for the determination of interaction between water-soluble ZnPcs (1Q and 2Q) and BSA or ct-DNA. The binding constants of these compounds to BSA were found in the order of 108 M-1. The binding constant of the ct-DNA interaction with 2Q (1.09 × 105 M-1) was found higher than 1Q (6.87 × 104 M-1). The thermodynamic constants were determined for both 1Q and 2Q. The endothermic and spontaneous nature of interaction was observed with ct-DNA. Besides, the thermal denaturation and viscosity studies proved the non-intercalative mode of binding for both compounds to ct-DNA.
Collapse
Affiliation(s)
- Khaoula Khezami
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Faculty of Science of Bizert, University of Carthage, Carthage, Tunisia
| | - Kevser Harmandar
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Efkan Bağda
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Gamze Şahin
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Nurşen Karakodak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
8
|
Erzunov DA, Botnar AA, Domareva NP, Tikhomirova TV, Vashurin AS. Synthesis, Spectroscopic Properties and Redox Behavior Kinetics of Rare-Earth Bistetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato Metal Complexes with Er, Lu and Yb. Molecules 2021; 26:2181. [PMID: 33920084 PMCID: PMC8068851 DOI: 10.3390/molecules26082181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Novel bistetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato of complexes erbium, lutetium and ytterbium were synthesized using a template fusion method to prevent any polymerization process. The complexes were separated from the reaction mixtures and characterized by NMR, IR and electron absorption spectroscopy. The spectroscopic properties of the metal phthalocyaninates in chloroform, acetone and tetrahydrofuran were studied. The regular bathochromic shift in the Er-Yb-Lu series was determined. In acetone medium all the complexes obtained were found to exist in an equilibrium state between neutral and reduced forms. The linearity of Lambert-Bouger-Beer curves makes it possible to study the kinetics of redox processes in the presence of phenylhydrazine and bromine. The lutetium complex showed better reducing properties and turned fully into the reduced form, while the erbium and ytterbium ones changed only partially. Upon oxidizing all the phthalocyaninates transformed into a mixture of oxidized and neutral-radical forms. The extinction coefficients and effective redox constants were calculated.
Collapse
Affiliation(s)
- Dmitry A. Erzunov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (A.A.B.); (N.P.D.); (T.V.T.); (A.S.V.)
| | | | | | | | | |
Collapse
|