1
|
Ji XY, Zou YX, Lei HF, Bi Y, Yang R, Tang JH, Jin QR. Advances in Cyclodextrins and Their Derivatives in Nano-Delivery Systems. Pharmaceutics 2024; 16:1054. [PMID: 39204399 PMCID: PMC11360519 DOI: 10.3390/pharmaceutics16081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The diversity of cyclodextrins and their derivatives is increasing with continuous research. In addition to monomolecular cyclodextrins with different branched chains, cyclodextrin-based polymers have emerged. The aim of this review is to summarize these innovations, with a special focus on the study of applications of cyclodextrins and their derivatives in nano-delivery systems. The areas covered include nanospheres, nano-sponges, nanogels, cyclodextrin metal-organic frameworks, liposomes, and emulsions, providing a comprehensive and in-depth understanding of the design and development of nano-delivery systems.
Collapse
Affiliation(s)
- Xin-Yu Ji
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Yi-Xuan Zou
- National institute of Metrology, Beijing 100029, China
| | - Han-Fang Lei
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Yong Bi
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Ji-Hui Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Qing-Ri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| |
Collapse
|
2
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X, Fu Y, Zheng F, Yue H, Dai Y. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154879. [PMID: 37229889 DOI: 10.1016/j.phymed.2023.154879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.
Collapse
Affiliation(s)
- Xingyu Tao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuan Hu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tongchuan Wu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Yang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunhua Fu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
5
|
Comparison of In Vitro Estrogenic Activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the Enhancement of ERα/β Expression in MCF7 Cells. Molecules 2023; 28:molecules28052199. [PMID: 36903444 PMCID: PMC10005224 DOI: 10.3390/molecules28052199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERβ, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.
Collapse
|
6
|
Peng S, Guo C, Wu S, Duan Z. Isolation, characterization and anti-UVB irradiation activity of an extracellular polysaccharide produced by Lacticaseibacillus rhamnosus VHPriobi O17. Heliyon 2022; 8:e11125. [PMID: 36299523 PMCID: PMC9589185 DOI: 10.1016/j.heliyon.2022.e11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/27/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to isolate exopolysaccharides (EPS) from lactic acid bacteria (LAB) and evaluate EPS anti-UVB viability. Lacticaseibacillus rhamnosus VHPriobi O17 with high EPS production was screened from 34 strains of LAB. The EPS (OP-2) produced by L. rhamnosus VHPriobi O17 was purified by alcohol precipitation and DEAE-μSphere anion exchange chromatography. By ion chromatography, FT-IR spectrum and gel column chromatography, EPS (OP-2) was a novel Man-like polysaccharide with the weight-averaged molecular of 84.2 kDa. The EPS (OP-2) can effectively alleviate HaCaT cells apoptosis and overproduction of reactive oxygen species (ROS) induced by UVB. The results also showed that it inhibited the release of pro-inflammatory cytokines (IL-1α, IL-6 and IL-8); and suppressed the phosphorylation cascade of JNK and p38 MAPK to reduce the expression level of active-caspase3, ultimately prevented cell apoptosis. Thus, the EPS produced by L. rhamnosus VHPriobi O17 have the potential to be used for human anti-UVB irradiation.
Collapse
Affiliation(s)
- Shudong Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Youmei Institute of Intelligent Bio-Manufacturing, Foshan, 528225, China
| | - Chaoqun Guo
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China
| | - Songjie Wu
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China,Corresponding author.
| |
Collapse
|
7
|
Liu WW, Wang F, Li C, Song XY, Otkur W, Zhu YY, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin relieves UVB-induced apoptosis of human skin cells by inhibiting the YAP-p73 pathway. Acta Pharmacol Sin 2022; 43:2156-2167. [PMID: 34912007 PMCID: PMC9343358 DOI: 10.1038/s41401-021-00826-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Excessive exposure to UVB induces skin diseases. Silibinin, a flavonolignan used for treating liver diseases, is found to be effective against UVB-caused skin epidermal and dermal cell damage. In this study we investigated the molecular mechanisms underlying. Human nonmalignant immortalized keratinocyte HaCaT cells and neonatal human foreskin fibroblasts HFFs were exposed to UVB irradiation. We showed that pre-treatment with silibinin dose-dependently decreased UVB-induced apoptosis of HaCaT cells. Furthermore, we showed that silibinin treatment inhibited nuclear translocation of YAP after UVB irradiation. Molecular docking analysis and DARTS assay confirmed the direct interaction of silibinin with YAP. Silencing YAP by siRNA had no influence on the survival of HaCaT cells, whereas inhibiting classical YAP-TEAD signaling pathway by siRNA targeting TEAD1 or its pharmaceutical inhibitor verteporfin further augmented UVB-induced apoptosis, suggesting that YAP-TEAD pathway was prosurvival, which did not participate in the protective effect of silibinin. We then explored the pro-apoptotic YAP-p73 pathway. p73 was upregulated in UVB-irradiated cells, but reduced by silibinin cotreatment. The mRNA and protein levels of p73 target genes (PML, p21 and Bax) were all increased by UVB but decreased by silibinin co-treatment. Inhibiting p73 by using siRNA reduced UVB-induced apoptosis, suggesting that downregulation of p73 was responsible for the cytoprotective effect of silibinin. In HFFs, the upregulated YAP-p73 pathway by UVB irradiation was also suppressed by silibinin. Collectively, YAP-p73 pathway is a major cause of the death of UVB-exposed epidermal HaCaT cells and dermal HFFs. Silibinin directly inhibits YAP-p73 pathway, exerting the protective action on UVB-irradiated skin cells.
Collapse
Affiliation(s)
- Wei-wei Liu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Fang Wang
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Can Li
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Xiao-yu Song
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Wuxiyar Otkur
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.423905.90000 0004 1793 300XCAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yu-ying Zhu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Toshihiko Hayashi
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.411110.40000 0004 1793 1012Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015 Japan ,Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, China.
| |
Collapse
|
8
|
UTO T, OHTA T, KATAYAMA K, SHOYAMA Y. Silibinin promotes melanogenesis through the PKA and p38 MAPK signaling pathways in melanoma cells. Biomed Res 2022; 43:31-39. [DOI: 10.2220/biomedres.43.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Takuhiro UTO
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Tomoe OHTA
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Koki KATAYAMA
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Yukihiro SHOYAMA
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
9
|
Pregnant Women and Endocrine Disruptors: Role of P2X7 Receptor and Mitochondrial Alterations in Placental Cell Disorders. Cells 2022; 11:cells11030495. [PMID: 35159304 PMCID: PMC8834275 DOI: 10.3390/cells11030495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
In pregnant women, the lungs, skin and placenta are exposed daily to endocrine-disrupting chemicals (EDCs). EDCs induce multiple adverse effects, not only on endocrine organs, but also on non-endocrine organs, with the P2X7 cell death receptor being potentially the common key element. Our objective was first to investigate mechanisms of EDCs toxicity in both endocrine and non-endocrine cells through P2X7 receptor activation, and second, to compare the level of activation in lung, skin and placental cells. In addition, apoptosis in placental cells was studied because the placenta is the most exposed organ to EDCs and has essential endocrine functions. A total of nine EDCs were evaluated on three human cell models. We observed that the P2X7 receptor was not activated by EDCs in lung non-endocrine cells but was activated in skin and placenta cells, with the highest activation in placenta cells. P2X7 receptor activation and apoptosis are pathways shared by all tested EDCs in endocrine placental cells. P2X7 receptor activation along with apoptosis induction could be key elements in understanding endocrine placental and skin disorders induced by EDCs.
Collapse
|
10
|
Budurova D, Momekova D, Momekov G, Shestakova P, Penchev H, Rangelov S. PEG-Modified tert-Octylcalix[8]arenes as Drug Delivery Nanocarriers of Silibinin. Pharmaceutics 2021; 13:2025. [PMID: 34959307 PMCID: PMC8709077 DOI: 10.3390/pharmaceutics13122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatoprotective properties of silibinin, as well its therapeutic potential as an anticancer and chemo-preventive agent, have failed to progress towards clinical development and commercialization due to this material's unfavorable pharmacokinetics and physicochemical properties, low aqueous solubility, and chemical instability. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-octylcalix[8]arene, to prepare various platforms for the delivery of silibinin, such as inclusion complexes and supramolecular aggregates thereof. The inclusion complex is characterized by various instrumental methods. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility increment of silibinin is attributed to the additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. PEG-modified tert-octylcalix[8]arenes, used as drug delivery carriers for silibinin, were additionally investigated for cytotoxicity against human tumor cell lines.
Collapse
Affiliation(s)
- Desislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St. Bldg 9, 1113 Sofia, Bulgaria;
| | - Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| |
Collapse
|