1
|
Xu Y, Tang Y, Cheng Y, Yang W, Liu J, Guo B, Luo G, Zhu H. Effects of different monochromatic light on growth performance and liver circadian rhythm of Yangzhou geese. Poult Sci 2024; 104:104496. [PMID: 39577174 PMCID: PMC11617679 DOI: 10.1016/j.psj.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The objective of this study is to examine the impact of monochromatic light on the circadian rhythms of blood melatonin and insulin-like growth factor 1 (IGF-1) levels, liver clock genes, and melatonin receptors. A total of 144 male Yangzhou geese were randomly assigned to four groups based on light color, with each group consisting of 36 geese. The geese were provided with ad libitum access to food and water, and were raised for 70 days under a photoperiod of 16 hours of light and 8 hours of darkness. They were weighed every 10 days, and blood, liver, and pituitary gland samples were collected at six time points every four hours when the geese reached 70 days of age. The findings indicated that exposure to green light (GL) had a stimulating impact on weight gain in Yangzhou geese, while not significantly affecting the feed-to-weight ratio. After undergoing the four photochromic treatments, both plasma melatonin levels and liver positive feedback clock gene expression displayed a diurnal low-night high pattern, reaching their peak in the evening. Conversely, plasma IGF-1 and negative feedback clock genes exhibited an opposite trend. However, monochromatic light significantly down-regulated the gene expression, peak and amplitude of retinoic acid receptor-related orphan receptor α (RORα), as well as advancing or delaying the phase of the circadian rhythm. Among them, GL significantly up-regulated the gene expression of the melatonin receptors 1C (MEL1C); blue light (BL) significantly increased plasma melatonin concentration and IGF-1 concentration and significantly decreased the peak and amplitude of period 3 gene (PER3), resulting in almost no difference in the expression of PER3 at the six times; and red light (RL) significantly down-regulated the expression and the peak of MEL1C as well as the peaks and amplitudes of the seven liver clock genes, especially circadian locomotor output cycles kaput factor (CLOCK). Moreover, the peaks and amplitudes of the clock genes for BL and GL are almost identical, except for PER3. The findings of this study offer a theoretical framework for facilitating the development of meat geese and implementing a logical approach to managing lighting conditions.
Collapse
Affiliation(s)
- Yingqing Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yi Tang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiyi Cheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wen Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Binbin Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Luo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Huanxi Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
2
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
3
|
Tse LH, Cheung ST, Lee S, Wong YH. Real-Time Determination of Intracellular cAMP Reveals Functional Coupling of G s Protein to the Melatonin MT 1 Receptor. Int J Mol Sci 2024; 25:2919. [PMID: 38474167 DOI: 10.3390/ijms25052919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Melatonin is a neuroendocrine hormone that regulates the circadian rhythm and many other physiological processes. Its functions are primarily exerted through two subtypes of human melatonin receptors, termed melatonin type-1 (MT1) and type-2 (MT2) receptors. Both MT1 and MT2 receptors are generally classified as Gi-coupled receptors owing to their well-recognized ability to inhibit cAMP accumulation in cells. However, it remains an enigma as to why melatonin stimulates cAMP production in a number of cell types that express the MT1 receptor. To address if MT1 can dually couple to Gs and Gi proteins, we employed a highly sensitive luminescent biosensor (GloSensorTM) to monitor the real-time changes in the intracellular cAMP level in intact live HEK293 cells that express MT1 and/or MT2. Our results demonstrate that the activation of MT1, but not MT2, leads to a robust enhancement on the forskolin-stimulated cAMP formation. In contrast, the activation of either MT1 or MT2 inhibited cAMP synthesis driven by the activation of the Gs-coupled β2-adrenergic receptor, which is consistent with a typical Gi-mediated response. The co-expression of MT1 with Gs enabled melatonin itself to stimulate cAMP production, indicating a productive coupling between MT1 and Gs. The possible existence of a MT1-Gs complex was supported through molecular modeling as the predicted complex exhibited structural and thermodynamic characteristics that are comparable to that of MT1-Gi. Taken together, our data reveal that MT1, but not MT2, can dually couple to Gs and Gi proteins, thereby enabling the bi-directional regulation of adenylyl cyclase to differentially modulate cAMP levels in cells that express different complements of MT1, MT2, and G proteins.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Suet Ting Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Seayoung Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| |
Collapse
|
4
|
Wang L, Wang Z, Chen Y, Cao J. Effects of monochromatic light on hepatic glycogen and lipid synthesis in broilers. Poult Sci 2024; 103:103193. [PMID: 37931402 PMCID: PMC10654228 DOI: 10.1016/j.psj.2023.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Animal growth is closely related to glycolipid metabolism, and the liver is the main organ for glycogen storage and fat synthesis in birds, but whether monochromatic light affects glycogen and lipid synthesis in the liver is unclear. Therefore, in this study, a total of 96 Arbor Acre (AA) broilers at posthatching d 0 (P0) were raised under 4 kinds of light-emitting diode (LED) lights, white light (WL), red light (RL), green light (GL), and blue light (BL), to posthatching d 21 (P21) and 35 (P35). The results showed that the liver, abdominal fat, and abdominal fat indices gradually increased with increasing age under monochromatic light treatments. The liver glycogen and triglyceride (TG) contents also showed an increasing trend. Furthermore, compared with those at P21, the mRNA levels of glycogen synthase (GS), glycogen synthase kinase-3β (GSK-3β), and protein kinase B (AKT1) in the liver were increased in the WL and RL groups at P35, and the mRNA levels of acetyl-CoA carboxylase (ACC) and apolipoprotein B (APOB) increased in all groups at P35. At the same time, the total antioxidant capacity (T-AOC) and liver superoxide dismutase (SOD) contents increased in all groups at P35 compared with those at P21. In addition, at P21, compared with WL, GL and BL promoted the serum glucose (GLU) and TG contents by increasing the mRNA levels of GS, GSK-3β, glucose-6-phosphatase (G6PC), ACC, and fatty acid synthase (FAS), but no effect on the proliferative ability and damage of hepatocytes. At P35, RL promoted the hepatic glycogen and TG contents by increasing GSK-3β, AKT1, ACC, and APOB mRNA levels, and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were increased than in the WL group. These results suggest that the effects of light color on liver glycogen and lipid synthesis in broilers changed with age, and also provide a theoretical guidance for scientific use of color of light information to improve productive performance in broilers.
Collapse
Affiliation(s)
- Lu Wang
- Laboratory of Anatomy of Domestic Animal, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|