1
|
Nemli E, Saricaoglu B, Kirkin C, Ozkan G, Capanoglu E, Habtemariam S, Sharifi‐Rad J, Calina D. Chemopreventive and Chemotherapeutic Potential of Betulin and Betulinic Acid: Mechanistic Insights From In Vitro, In Vivo and Clinical Studies. Food Sci Nutr 2024; 12:10059-10069. [PMID: 39723067 PMCID: PMC11666818 DOI: 10.1002/fsn3.4639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
Betulin is a bioactive compound found in large quantities in birch bark and has a triterpene pentacyclic structure. Through the oxidation of betulin, betulinic acid is obtained, which is found in large quantities in nature. Betulin and betulinic acid have multiple pharmacological properties such as antiviral, anti-inflammatory, and anticancer properties. This comprehensive review aims to deepen the knowledge of the chemopreventive and chemotherapeutic effects of betulin and betulinic acid by presenting in vitro, in vivo, and clinical studies evaluating the anticancer mechanisms of betulin, betulinic acid, and their derivatives. The databases searched using specific MESh terms to conduct this review were PubMed/MEDLINE, Web of Science, TRIP database, Wiley, and Scopus. The anticancer properties of betulin and betulinic acid have been reported in a variety of experimental pharmacological studies using different types of cancer cell lines. It has been indicated that induction of apoptosis is the primary anticancer activity of these compounds by selectively affecting cancer cells. As shown by various research, the apoptotic cell death by these compounds is mainly related to factors such as type of cancer and cancer cell line, tumor size, source of betulin/betulinic acid, dose, treatment time, and the type of the drug delivery system employed. Numerous preclinical pharmacological studies and clinical trials on the chemopreventive and antitumour effects of betulin, betulinic acid, and their derivatives have been published. Future translational pharmacological studies establishing the exact anticancer dose effective in humans are needed.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Celale Kirkin
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham‐MaritimeKentUK
| | - Javad Sharifi‐Rad
- Universidad Espíritu SantoSamborondónEcuador
- Centro de Estudios Tecnológicos y Universitarios del GolfoVeracruzMexico
- Department of Medicine, College of MedicineKorea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
2
|
Morparia S, Metha C, Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002-2023). Nat Prod Res 2024:1-21. [PMID: 39385745 DOI: 10.1080/14786419.2024.2412838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Betulinic acid, a compound classified as a pentacyclic triterpenoid, is found in abundance in a variety of medicinal plants and natural substances. Its broad spectrum of biological and medicinal properties, particularly its potent antitumor activity, has gained significant attention in recent years. The anticancer properties of betulinic acid are governed by mitochondrial signalling pathways and it exhibit selectivity for cancerous tissue, leaving non-cancerous cells and normal tissue unharmed. This characteristic is particularly valuable in chemo-resistant cases. Nevertheless, the medicinal potential of betulinic acid is hindered by its poor water solubility and short half-life, leading to sub-optimal effectiveness. This issue is being tackled by a variety of nano-sized drug delivery systems, such as polymeric nanoparticles, magnetic nanoparticles, polymeric conjugates, nanoemulsions, liposomes, nanosuspensions, carbon nanotubes, and cyclodextrin complexes. This article focuses on recent advances in nanoformulations that are tailored to the delivery of betulinic acid with enhanced effectiveness.
Collapse
Affiliation(s)
- Saurabh Morparia
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Chaitanya Metha
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
4
|
Chen S, Lin B, Gu J, Yong T, Gao X, Xie Y, Xiao C, Zhan JY, Wu Q. Binding Interaction of Betulinic Acid to α-Glucosidase and Its Alleviation on Postprandial Hyperglycemia. Molecules 2022; 27:molecules27082517. [PMID: 35458714 PMCID: PMC9032457 DOI: 10.3390/molecules27082517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Inhibiting the intestinal α-glucosidase can effectively control postprandial hyperglycemia for type 2 diabetes mellitus (T2DM) treatment. In the present study, we reported the binding interaction of betulinic acid (BA), a pentacyclic triterpene widely distributed in nature, on α-glucosidase and its alleviation on postprandial hyperglycemia. BA was verified to exhibit a strong inhibitory effect against α-glucosidase with an IC50 value of 16.83 ± 1.16 μM. More importantly, it showed a synergistically inhibitory effect with acarbose. The underlying inhibitory mechanism was investigated by kinetics analysis, surface plasmon resonance (SPR) detection, molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. BA showed a non-competitive inhibition on α-glucosidase. SPR revealed that it had a strong and fast affinity to α-glucosidase with an equilibrium dissociation constant (KD) value of 5.529 × 10−5 M and a slow dissociation. Molecular docking and MD simulation revealed that BA bound to the active site of α-glucosidase mainly due to the van der Waals force and hydrogen bond, and then changed the micro-environment and secondary structure of α-glucosidase. Free energy decomposition indicated amino acid residues such as PHE155, PHE175, HIE277, PHE298, GLU302, TRY311 and ASP347 of α-glucosidase at the binding pocket had strong interactions with BA, while LYS153, ARG210, ARG310, ARG354 and ARG437 showed a negative contribution to binding affinity between BA and α-glucosidase. Significantly, oral administration of BA alleviated the postprandial blood glucose fluctuations in mice. This work may provide new insights into the utilization of BA as a functional food and natural medicine for the control of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Bing Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Jiangyong Gu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Tianqiao Yong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
| | - Janis Yaxian Zhan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Correspondence: (J.Y.Z.); (Q.W.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; (S.C.); (T.Y.); (X.G.); (Y.X.); (C.X.)
- Correspondence: (J.Y.Z.); (Q.W.)
| |
Collapse
|