1
|
Hua Y, Tian X, Zhang X, Song G, Liu Y, Zhao Y, Gao Y, Yin F. Applications and challenges of photodynamic therapy in the treatment of skin malignancies. Front Pharmacol 2024; 15:1476228. [PMID: 39364058 PMCID: PMC11446773 DOI: 10.3389/fphar.2024.1476228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Photodynamic Therapy (PDT), as a minimally invasive treatment method, has demonstrated its distinct advantages in the management of skin malignant tumors. This article examines the current application status of PDT, assesses its successful cases and challenges in clinical treatment, and anticipates its future development trends. PDT utilizes photosensitizers to interact with light of specific wavelengths to generate reactive oxygen species that selectively eradicate cancer cells. Despite PDT's exceptional performance in enhancing patients' quality of life and prognosis, the limitation of treatment depth and the side effects of photosensitizers remain unresolved issues. With the advancement of novel photosensitizers and innovative treatment technology, the application prospects of PDT are increasingly expansive. This article delves into the mechanism of PDT, its application in various skin malignancies, its advantages and limitations, and envisions its future development. We believe that through continuous technological enhancements and integration with other treatment technologies, PDT has the potential to assume a more pivotal role in the treatment of skin malignancies.
Collapse
Affiliation(s)
- Yunqi Hua
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Xiaoling Tian
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xinyi Zhang
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Ge Song
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yubo Liu
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ye Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Yuqian Gao
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Fangrui Yin
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Jiang Y, Huang S, Ma H, Weng J, Du X, Lin Z, Kim J, You W, Zhang H, Wang D, Kim JS, Sun H. RNA-Activatable Near-Infrared Photosensitizer for Cancer Therapy. J Am Chem Soc 2024; 146:25270-25281. [PMID: 39215718 DOI: 10.1021/jacs.4c09470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) has recently come to the forefront as an exceptionally powerful and promising method for the treatment of cancer. Existing photosensitizers are predominantly engineered to target diverse biomolecules, including proteins, DNA, lipids, and carbohydrates, and have proven to greatly enhance the efficacy or specificity of PDT. However, it is noteworthy that there exists a conspicuous scarcity of photosensitizers specifically designed to target RNAs. Recognizing the crucial and multifaceted roles played by RNAs in various cellular processes and disease states, we have ventured into the development of a novel RNA-targeting photosensitizer, named Se-718, designed specifically for PDT-based cancer therapy. Se-718 has been engineered to exhibit a high molar absorption coefficient in the NIR region, which is crucial for effective PDT. More importantly, Se-718 has demonstrated a distinct RNA-targeting capability, as evidenced through rigorous testing in both circular dichroism and fluorescence experiments. Furthermore, Se-718 has been shown to display both type I and type II photodynamic properties. This unique characteristic enables the efficient killing of cancer cells under a wide range of oxygen conditions, both normoxic (21% O2) and hypoxic (2% O2). The IC50 of Se-718 can be as low as 100 nM, and its light-to-dark toxicity ratio is an impressive 215 times higher, outperforming most photosensitizers currently available. Moreover, in vivo studies conducted with tumor-bearing mice have demonstrated the excellent antitumor effects and high safety profile of Se-718. Considering the outstanding PDT efficacy of Se-718, we are optimistic that the development of RNA-targeting photosensitizers may provide an innovative and highly effective option for cancer therapeutics in the near future.
Collapse
Affiliation(s)
- Yin Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shumei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| | - Haiying Ma
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong510000, China
| | - Jintao Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaomeng Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhenxin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Wenhui You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang ,Guangdong522000,China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon ,Hong Kong999077, China
| |
Collapse
|
3
|
Jena S, Tulsiyan KD, Sahoo RR, Rout S, Sahu AK, Biswal HS. Critical assessment of selenourea as an efficient small molecule fluorescence quenching probe to monitor protein dynamics. Chem Sci 2023; 14:14200-14210. [PMID: 38098725 PMCID: PMC10718066 DOI: 10.1039/d3sc04287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Organoselenium compounds have recently been the experimentalists' delight due to their broad applications in organic synthesis, medicinal chemistry, and materials science. Selenium atom replacement of the carbonyl oxygen of the urea moiety dramatically reduces the HOMO-LUMO gap and oxidation potential, which completely changes the physicochemical properties of selenocarbonyl compounds. To our surprise, the photophysics and utility of a simple molecule such as selenourea (SeU) have not been explored in detail, which persuaded us to investigate its role in excited state processes. The steady-state emission, temperature-dependent time-correlated single photon counting, and femtosecond fluorescence upconversion experimental results confirmed that SeU significantly enhances the fluorescence quenching through a photoinduced electron transfer (PET) mechanism with an ∼10 ps ultrafast intrinsic PET lifetime component which is mostly absent in thiourea (TU). A wide range of fluorophores, based on their different redox abilities and fluorescence lifetimes covering a broad spectral window (λex: 390-590 nm and λem: 490-690 nm), were chosen to validate the proof of the concept. It was extended to tetramethylrhodamine (TMR)-5-maleimide labeled lysozyme protein, where we observed significant fluorescence quenching in the presence of SeU. The present work emphasizes that the high quenching efficiency with an ultrafast PET process, reduced orbital energy gap, and higher negative free energy change of the electron transfer reaction are the representative characteristics of selenourea or selenoamides to enable them as potential surrogates of thioamides or oxoamides quenching probes to monitor protein conformational changes and dynamics.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Rudhi Ranjan Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saiprakash Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
4
|
Wang H, Qin T, Wang W, Zhou X, Lin F, Liang G, Yang Z, Chi Z, Tang BZ. Selenium-Containing Type-I Organic Photosensitizers with Dual Reactive Oxygen Species of Superoxide and Hydroxyl Radicals as Switch-Hitter for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301902. [PMID: 37357144 PMCID: PMC10460872 DOI: 10.1002/advs.202301902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Organic type-I photosensitizers (PSs) which produce aggressive reactive oxygen species (ROS) with less oxygen-dependent exhibit attractive curative effect for photodynamic therapy (PDT), as they adapt better to hypoxia microenvironment in tumors. However, the reported type-I PSs are limited and its exacted mechanism of oxygen dependence is still unclear. Herein, new selenium-containing type-I PSs of Se6 and Se5 with benzoselenadiazole acceptor has been designed and possessed aggregation-induced emission characteristic. Benefited from double heavy-atom-effect of selenium and bromine, Se6 shows a smaller energy gap (ΔEST ) of 0.03 eV and improves ROS efficiency. Interestingly, type-I radicals of both long-lived superoxide anion (O2 •‾ ) and short-lived hydroxyl (• OH) are generated from them upon irradiation. This may provide a switch-hitter of dual-radical with complementary lifetimes for PDT. More importantly, simultaneous processes to produce • OH are revealed, including disproportionation of O2 •‾ and reaction between excited PS and water. Actually, Se6 displays superior in-vitro PDT performance to commercial chlorin e6 (Ce6), under normoxia or hypoxia. After intravenous injection, a significantly in-vivo PDT performance is demonstrated on Se6, where tumor growth inhibition rates of 99% is higher than Ce6. These findings offer new insights about both molecular design and mechanism study of type-I PSs.
Collapse
Affiliation(s)
- Haiyang Wang
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Tian Qin
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Xie Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Faxu Lin
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Guodong Liang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zhiyong Yang
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zhenguo Chi
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Molecular Aggregate Science and Engineeringthe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| |
Collapse
|