1
|
Caires CSA, Lima THN, Nascimento RC, Araujo LO, Aguilera LF, Caires ARL, Oliveira SL. Photoinactivation of Multidrug-Resistant mcr-1-Positive E. coli Using PCPDTBT Conjugated Polymer Nanoparticles under White Light. ACS APPLIED BIO MATERIALS 2024; 7:7404-7412. [PMID: 39423350 DOI: 10.1021/acsabm.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The issue of antimicrobial resistance is an escalating concern within the scope of global health. It is predicted that the existence of antibiotic-resistant bacteria might result in an estimated annual death of up to 10 million by 2050, along with possible economic losses ranging from 100 to 210 trillion. This study reports the production of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] nanoparticles (PCPDTBT-NPs) by nanoprecipitation as an alternative to tackle this problem. The size, shape, and optical features of these conjugated polymer NPs were analyzed. Their efficacy as photosensitizers against nonresistant (ATCC) and multidrug-resistant mcr-1-positive Escherichia coli was assessed under white light doses of 250 and 375 J·cm-2. PCPDTBT-NPs inactivated both E. coli strains exposed to white light at an intensity of 375 J·cm-2, while no antimicrobial effect was observed in the group not exposed to white light. Reactive oxygen species and singlet oxygen were detected using DCFH-DA and DPBF probes, allowing the investigation of the photoinactivation pathways. This work showcases PCPDTBT-NPs as photosensitizers to eliminate multidrug-resistant bacteria through photodynamic inactivation employing visible light.
Collapse
Affiliation(s)
- Cynthia S A Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Escola de Saúde, Santa Casa de Campo Grande, 79002-201 Campo Grande, MS, Brazil
| | - Thalita H N Lima
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Rafael C Nascimento
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Leandro O Araujo
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Laís F Aguilera
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Anderson R L Caires
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Martínez SR, Caverzan M, Ibarra LE, Aiassa V, Bohl L, Porporatto C, Gómez ML, Chesta CA, Palacios RE. Light-activated conjugated polymer nanoparticles to defeat pathogens associated with bovine mastitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112971. [PMID: 38955081 DOI: 10.1016/j.jphotobiol.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.
Collapse
Affiliation(s)
- Sol R Martínez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Matías Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María, Villa María, Argentina. Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - María L Gómez
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Rodrigo E Palacios
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
3
|
Majiya H, Adamu A, Galstyan A. Photostability and photodynamic antimicrobial profile of dye extracts from four (4) plants: prospects for eco-friendly low-cost food disinfection and topical biomedical applications. Photochem Photobiol Sci 2024; 23:1179-1194. [PMID: 38771468 DOI: 10.1007/s43630-024-00585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
In this study, photostability and photodynamic antimicrobial performance of dye extracts from Hibiscus sabdariffa (HS) calyces, Sorghum bicolor (SB) leaf sheaths, Lawsonia inermis (LI) leaves and Curcuma longa (CL) roots were investigated in Acetate-HCl (AH) Buffer (pH 4.6), Tris Base-HCl (TBH) Buffer (pH 8.6), distilled water (dH2O), and Phosphate Buffer Saline (PBS, pH 7.2) using Bacillus subtilis as model for gram positive bacteria, Escherichia coli as model for gram negative bacteria, phage MS2 as model for non-envelope viruses and phage phi6 as model for envelope viruses including SARS CoV-2 which is the causative agent of COVID-19. Our results showed that the photostability of the dye extracts is in the decreasing order of LI > CL > SB > HS. The dye extract-HS is photostable in dH2O but bleaches in buffers-AH, TBH and PBS. The rate of bleaching is higher in AH compared to in TBH and PBS. The bleaching and buffers affected the photodynamic and non-photodynamic antimicrobial activity of the dye extracts. The photodynamic antibacterial activity of the dye extracts is in the decreasing order of CL > HS > LI > SB while the non-photodynamic antibacterial activity is in the decreasing order of LI > CL > HS > SB. The non-photodynamic antiviral activity pattern observed is the same as that of non-photodynamic antibacterial activity observed. However, the photodynamic antiviral activity of the dye extracts is in the decreasing order of CL > LI > HS > SB. Given their performance, the dye extracts maybe mostly suitable for environmental applications including fresh produce and food disinfection, sanitation of hands and contact surfaces where water can serve as diluent for the extracts and the microenvironment is free of salts.
Collapse
Affiliation(s)
- Hussaini Majiya
- Department of Microbiology, Ibrahim Badamasi Babangida University, Lapai, KM3 Lapai-Minna Road, P.M.B 11, Lapai, Nigeria.
- Center for Applied Sciences and Technology Research, Ibrahim Badamasi Babangida University, Lapai, Nigeria.
- Trans-Saharan Disease Research Center, Ibrahim Badamasi Babangida University, Lapai, Nigeria.
| | - Aliyu Adamu
- Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja, Nigeria
| | - Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg‑Essen and Centre for Water and Environmental Research, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
4
|
Singh N, Sen Gupta R, Bose S. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. NANOSCALE 2024; 16:3243-3268. [PMID: 38265094 DOI: 10.1039/d3nr05801h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced via the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO2), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(β-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM-b-PMAGA)4), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.
Collapse
Affiliation(s)
- Neetika Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| |
Collapse
|
5
|
Martínez SR, Odella E, Ibarra LE, Sosa Lochedino A, Wendel AB, Durantini AM, Chesta CA, Palacios RE. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. ULTRASONICS 2024; 137:107180. [PMID: 37847942 DOI: 10.1016/j.ultras.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Sonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm2) can induce damage to vital components of pathogenic microorganisms. Herein, we report the synthesis and application of conjugated polymer nanoparticles (CPNs) as an efficient SS in SDI of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae and Candida tropicalis. A frequent problem in the design and testing of new SS for SDI is the lack of proper sonoreactor characterization which leads to reproducibility concerns. To address this issue, we performed dosimetry experiments in our setup. This enables the validation of our results by other researchers and facilitates meaningful comparisons with different SDI systems in future studies. On a different note, it is generally accepted that the mechanisms of action underlying SS-mediated SDI involve the production of reactive oxygen species (ROS). In an attempt to establish the nature of the cytotoxic species involved in our CPNs-based SDI protocol, we demonstrated that singlet oxygen (1O2) does not play a major role in the observed sonoinduced killing effect. SDI experiments in planktonic cultures of optimally growing pathogens using CPNs result in a germicide effect on the studied pathogenic microorganisms. The implementation of SDI protocols using CPNs was further tested in mature biofilms of a MRSA resulting in ∼40 % reduction of biomass and ∼70 % reduction of cellular viability. Overall, these results highlight the unique and unexplored capacity of CPNs to act as sonosensitizers opening new possibilities in the design and application of novel inactivation protocols against morbific microbes.
Collapse
Affiliation(s)
- Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Arianna Sosa Lochedino
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ana B Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Andrés M Durantini
- Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
6
|
Li J, Pan G, Zyryanov GV, Peng Y, Zhang G, Ma L, Li S, Chen P, Wang Z. Positively Charged Semiconductor Conjugated Polymer Nanomaterials with Photothermal Activity for Antibacterial and Antibiofilm Activities In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40864-40876. [PMID: 37603418 DOI: 10.1021/acsami.3c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Biofilm infections are associated with most human bacterial infections and are prone to bacterial multidrug resistance. There is an urgent need to develop an alternative approach to antibacterial and antibiofilm agents. Herein, two positively charged semiconductor conjugated polymer nanoparticles (SPPD and SPND) were prepared for additive antibacterial and antibiofilm activities with the aid of positive charge and photothermal therapy (PTT). The positive charge of SPPD and SPND was helpful in adhering to the surface of bacteria. With an 808 nm laser irradiation, the photothermal activity of SPPD and SPND could be effectively transferred to bacteria and biofilms. Under the additive effect of positive charge and PTT, the inhibition rate of Staphylococcus aureus (S. aureus) treated with SPPD and SPND (40 μg/mL) could reach more than 99.2%, and the antibacterial activities of SPPD and SPND against S. aureus biofilms were 93.5 and 95.8%. SPPD presented better biocompatibility than SPND and exhibited good antibiofilm properties in biofilm-infected mice. Overall, this additive treatment strategy of positive charge and PTT provided an optional approach to combat biofilms.
Collapse
Affiliation(s)
- Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guoyong Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Grigory V Zyryanov
- Russia Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ural Federal University, Yekaterinburg 620219, Russia
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Zhao Y, Wang Y, Wang X, Qi R, Yuan H. Recent Progress of Photothermal Therapy Based on Conjugated Nanomaterials in Combating Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2269. [PMID: 37570588 PMCID: PMC10421263 DOI: 10.3390/nano13152269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to the choice of photothermal agent. Conjugated nanomaterials are potential candidates for photothermal agents because of their easy modification, excellent photothermal conversion efficiency, good photostability, and biodegradability. In this paper, the application of photothermal agents based on conjugated nanomaterials in photothermal antimicrobial treatment is reviewed, including conjugated small molecules, conjugated oligomers, conjugated polymers, and pseudo-conjugated polymers. At the same time, the application of conjugated nanomaterials in the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) is briefly introduced. Finally, the research status, limitations, and prospects of photothermal therapy using conjugated nanomaterials as photothermal agents are discussed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Caverzán MD, Oliveda PM, Beaugé L, Palacios RE, Chesta CA, Ibarra LE. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023; 12:1541. [PMID: 37296661 PMCID: PMC10252555 DOI: 10.3390/cells12111541] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols. The main objective of the present work was to compare the effectiveness of PDT with an advanced PS based on conjugated polymer nanoparticles (CPN) developed by our group in two irradiation modalities: cPDT and mPDT. The in vitro evaluation was carried out based on cell viability, the impact on the macrophage population of the tumor microenvironment in co-culture conditions and the modulation of HIF-1α as an indirect indicator of oxygen consumption. mPDT regimens with CPNs resulted in more effective cell death, a lower activation of molecular pathways of therapeutic resistance and macrophage polarization towards an antitumoral phenotype. Additionally, mPDT was tested in a GBM heterotopic mouse model, confirming its good performance with promising tumor growth inhibition and apoptotic cell death induction.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Paula Martina Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| | - Lucía Beaugé
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| |
Collapse
|
9
|
Roy S, Roy J, Guo B. Nanomaterials as multimodal photothermal agents (PTAs) against 'Superbugs'. J Mater Chem B 2023; 11:2287-2306. [PMID: 36857688 DOI: 10.1039/d2tb02396b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Superbugs, also known as multidrug-resistant bacteria, have become a lethal and persistent threat due to their unresponsiveness toward conventional antibiotics. The main reason for this is that superbugs can rapidly mutate and restrict any foreign drug/molecule in their vicinity. Herein, nanomaterial-mediated therapies have set their path and shown burgeoning efficiency toward the ablation of superbugs. Notably, treatment modalities like photothermal therapy (PTT) have shown prominence in killing multidrug-resistant bacteria with their ability to generate local heat shock-mediated hyperthermia in such species. However, photothermal treatment has some serious limitations, such as high cost, complexity, and even toxicity to some extent. Hence, it is important to resolve such shortcomings of PTTs as they provide substantial tissue penetration. This is why multimodal PTTs have emerged and taken over this domain of research for the past few years. In this work, we have summarized and critically reviewed such exceptional works of recent times and provided a perspective to enhance their efficiencies. Profoundly, we discuss the design rationales of some novel photothermal agents (PTAs) and shed light on their mechanisms. Finally, challenges for PTT-derived multimodal therapy are presented, and capable synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Singh S, Meador WE, Pramanik A, Ray P, Delcamp JH, Zhao Y. An indolizine squaraine-based water-soluble NIR dye for fluorescence imaging of multidrug-resistant bacteria and antibacterial/antibiofilm activity using the photothermal effect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112652. [PMID: 36682344 DOI: 10.1016/j.jphotobiol.2023.112652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The majority of nosocomial infections are caused by bacteria with antimicrobial resistance and the formation of biofilms, such as implant-related bacterial infections and sepsis. There is an urgent need to develop new strategies for early-stage screening, destruction of multidrug-resistant bacteria, and efficient inhibition of biofilms. Organic dyes that absorb and emit in the near-infrared (NIR) region are potentially non-invasive, high-resolution, and rapid biological imaging materials. In this study, a non-toxic and biocompatible indolizine squaraine dye with water-solubilizing sulfonate groups (SO3SQ) is studied for bacterial imaging and photothermal therapy (PTT). PTT is efficient in eliminating microorganisms through local hyperthermia without the risk of developing drug-resistant bacteria. The optical properties of SO3SQ are studied extensively in phosphate-buffered saline (PBS). UV-Vis-NIR absorption spectra analysis shows a strong absorption between 650 nm - 1000 nm. SO3SQ allows for the wash-free fluorescence imaging of drug-resistant bacteria via NIR fluorescence imaging due to a "turn-on" fluorescence property of the dye when interacting with bacteria. Although SO3SQ exhibits no toxicity against both Gram-positive bacteria and Gram-negative bacteria, the PTT property of SO3SQ is efficient in killing bacteria as well as inhibiting and eradicating biofilms. PTT experiments demonstrate that SO3SQ reduces 90% of cell viability in bacterial strains under NIR radiation with a minimum inhibition concentration (MIC90) of >450 μg/mL. The PTT property of SO3SQ can also inhibit biofilms (BIC90 = 1000-2000 μg/mL) and eradicate both preformed young and mature biofilms (MBEC90 = 1500-2000 μg/mL) as observed by crystal violet assays.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States of America
| | - William E Meador
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Avijit Pramanik
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States of America
| | - Paresh Ray
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States of America
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Yongfeng Zhao
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States of America.
| |
Collapse
|