1
|
Carroll EC, Yang H, Jones JG, Oehler A, Charvat AF, Montgomery KM, Yung A, Millbern Z, Vinueza NR, DeGrado WF, Mordes DA, Condello C, Gestwicki JE. Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610853. [PMID: 39282355 PMCID: PMC11398390 DOI: 10.1101/2024.09.02.610853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.
Collapse
Affiliation(s)
- Emma C Carroll
- Department of Chemistry, San José State University, San José, CA 95192
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Hyunjun Yang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Julia G Jones
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Annemarie F Charvat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Kelly M Montgomery
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Anthony Yung
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Zoe Millbern
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pathology, University of California San Francisco; San Francisco, CA 94158
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Neurology, University of California San Francisco; San Francisco, CA 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| |
Collapse
|
2
|
Stepanchuk AA, Stys PK. Spectral Fluorescence Pathology of Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:898-908. [PMID: 38407017 DOI: 10.1021/acschemneuro.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Hung CS, Lee KL, Huang WJ, Su FH, Liang YC. Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16467. [PMID: 38003657 PMCID: PMC10671009 DOI: 10.3390/ijms242216467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-He Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|