1
|
Bhakta V, Shireen Z, Dey S, Guchhait N. Fluorescence detection of Al 3+ ion in aqueous medium and live cell imaging by ESIPT probe (E)-N'-(5-bromo-2-hydroxybenzylidene)-4-hydroxybenzohydrazide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122749. [PMID: 37116277 DOI: 10.1016/j.saa.2023.122749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
The molecule (E)-N'-(5-bromo-2-hydroxybenzylidene)-4-hydroxybenzohydrazide (BHHB) has been synthesized and its photophysical properties have been investigated by using steady state absorption, emission and time resolved emission spectroscopy. The molecule shows excited state intramolecular proton transfer (ESIPT) process with characteristics large Stoke shifted emission. Fluorescence enhancement of BHHB only in presence of Al3+ ion is used as selective aluminium ion sensor in the sub-nano molar scale in aqueous solution. BHHB-Al3+ ion complex can penetrate through live Hepatocellular Carcinoma (HepG2) cell membranes and is capable for imaging of nucleus of live cells by fluorescence confocal microscopy.
Collapse
Affiliation(s)
- Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Zofa Shireen
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
2
|
Szemik-Hojniak A, Deperasińska I, Erez Y, Gawłowska M, Jerzykiewicz L. Ultrafast excited state dynamics of pyridine N-oxide derivative in solution; femtosecond fluorescence up-conversion and theoretical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121896. [PMID: 36183536 DOI: 10.1016/j.saa.2022.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In this study we have investigated 2-ethylamino-4-nitro-6-methyl pyridine N-oxide (2E6M) molecule that belongs to important group of Proton Coupled Electron Transfer (PCET) compounds where both the charge transfer (CT) and proton transfer processes in excited states may proceed. In this case, this is possible due to the donors and acceptors of electrons and protons in this system, as well as due to the presence of intramolecular {N-H… O [2,566(3) Å}, hydrogen bond.Using stationary and time-resolved spectroscopy, as well as quantum chemical calculations on the DFT and TD DFT B3LYP/6-31G (d,p) level of theory, a partial CT nature of the S0 → S1 transition in both tautomeric forms (N and T) has been revealed. Additionally, the excited state intramolecular proton transfer (ESIPT) process shown to be more favorable in apolar and weakly polar solvents than in strongly polar acetonitrile (EN(S1) > ET(S1). The displacement of charge from the amine group and the ring to the nitro group has been observed on the changing shapes of the HOMO and LUMO orbitals involved in this transition what further quantitatively allowed to realize the increase in the dipole moment of both forms in the electronic excited state. The calculations show that in two solvents with radically different polarity (heptane, acetonitrile), dipole moments of both forms are very similar [in acetonitrile uN(S1) and uT(S1) are 11.0 D and 11.5 D, respectively]. Hence, in polar media both forms can be stabilized in a comparable manner. This made it difficult for us to assign a single fluorescent band in acetonitrile to one of the tautomeric forms. However, it seems that due to application of time-resolved spectroscopy, this problem has been clarified. The TCSPC decay curve in acetonitrile with an ultrafast lifetime assigned to the (N) form, along with the femtosecond up-conversion signals that demonstrated only an ultrafast decay without any rise-time of a new excited (T) species, allowed us to conclude that in 2E6M in strongly polar solvent the ESIPT does not occur.The unique fluorescence band origins from the (N) form. In protic solvents, the significant kinetic isotopic effects have provided us with conclusive evidence for the presence of the solvent-assisted ESIPT process. Furthermore, it was noticed that the fluorescence lifetime in D2O (100-120 fs) estimated from the up-conversion signals is about 40 times shorter relative to methanol. This may suggest that the sine qua non for the ESIPT process in 2E6M in protic solvents is the formation of a complex with a solvent molecule in the hydrogen bridge between the proton donor and proton acceptor, respectively.
Collapse
Affiliation(s)
- Anna Szemik-Hojniak
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14 st, 50-383 Wrocław, Poland; The Angelus Silesius State University of Applied Sciences, Institute of Health, Zamkowa 4 str 58-300 Wałbrzych, Poland.
| | - Irena Deperasińska
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46,02-668 Warsaw, Poland
| | - Yuval Erez
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Monika Gawłowska
- The Angelus Silesius State University of Applied Sciences, Institute of Health, Zamkowa 4 str 58-300 Wałbrzych, Poland
| | - L Jerzykiewicz
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14 st, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Shaydyuk Y, Bashmakova NV, Dmytruk AM, Kachkovsky OD, Koniev S, Strizhak AV, Komarov IV, Belfield KD, Bondar MV, Babii O. Nature of Fast Relaxation Processes and Spectroscopy of a Membrane-Active Peptide Modified with Fluorescent Amino Acid Exhibiting Excited State Intramolecular Proton Transfer and Efficient Stimulated Emission. ACS OMEGA 2021; 6:10119-10128. [PMID: 34056166 PMCID: PMC8153670 DOI: 10.1021/acsomega.1c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 μJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
National Academy of Sciences, Murmanskaya Street 1, Kyiv 02660, Ukraine
| | - Serhii Koniev
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Igor V. Komarov
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kevin D. Belfield
- New
Jersey Institute of Technology, College of Science and Liberal Arts, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Oleg Babii
- Institute
of Biological Interfaces (IBG-2), Karlsruhe
Institute of Technology (KIT), POB3640, Karlsruhe 76021, Germany
| |
Collapse
|
4
|
Bhattacharyya A, Mandal SK, Guchhait N. Imine–Amine Tautomerism vs Keto–Enol Tautomerism: Acceptor Basicity Dominates Over Acceptor Electronegativity in the ESIPT Process through a Six-Membered Intramolecular H-Bonded Network. J Phys Chem A 2019; 123:10246-10253. [DOI: 10.1021/acs.jpca.9b08646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Rohman MA, Sutradhar D, Bangal PR, Chandra AK, Mitra S. Excited State Decay Dynamics in 3‐Formyl‐4‐hydroxy Benzoic Acid: Understanding the Global Picture of an ESIPT‐Driven Multiple‐Emissive Species. ChemistrySelect 2019. [DOI: 10.1002/slct.201901570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mostofa Ataur Rohman
- Centre for Advanced StudiesDepartment of ChemistryNorth-Eastern Hill University Shillong – 793022 India
| | - Dipankar Sutradhar
- Centre for Advanced StudiesDepartment of ChemistryNorth-Eastern Hill University Shillong – 793022 India
| | - Prakriti Ranjan Bangal
- Inorganic & Physical Chemistry DivisionCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad- 500007, Telangana India
| | - Asit K. Chandra
- Centre for Advanced StudiesDepartment of ChemistryNorth-Eastern Hill University Shillong – 793022 India
| | - Sivaprasad Mitra
- Centre for Advanced StudiesDepartment of ChemistryNorth-Eastern Hill University Shillong – 793022 India
| |
Collapse
|
6
|
Ding Q, Shi Y, Chen M, Li H, Yang X, Qu Y, Liang W, Sun M. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions. Sci Rep 2016; 6:32724. [PMID: 27601199 PMCID: PMC5013321 DOI: 10.1038/srep32724] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022] Open
Abstract
Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling.
Collapse
Affiliation(s)
- Qianqian Ding
- Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.,Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hui Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, People's Republic of China.,Department of Physics, Liaoning University, Shenyang 110036, Liaoning, People's Republic of China
| | - Xianzhong Yang
- Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yingqi Qu
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Wenjie Liang
- Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Mengtao Sun
- Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.,Beijing National Laboratory for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Department of Physics, Liaoning University, Shenyang 110036, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Verma PK, Steinbacher A, Schmiedel A, Nuernberger P, Brixner T. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:023606. [PMID: 26798837 PMCID: PMC4720111 DOI: 10.1063/1.4937363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state.
Collapse
Affiliation(s)
- Pramod Kumar Verma
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steinbacher
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | | | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
A novel non-fluorescent excited state intramolecular proton transfer phenomenon induced by intramolecular hydrogen bonds: an experimental and theoretical investigation. Sci Rep 2016; 6:19774. [PMID: 26790961 PMCID: PMC4726414 DOI: 10.1038/srep19774] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Two molecules, 1-hydroxypyrene-2-carbaldehyde (HP) and 1-methoxypyrene-2-carbaldehyde (MP) were explored. We investigated their photophysical properties, using experimental transient absorption and theoretical density functional theory/time-dependent density functional theory (DFT/TDDFT). HP and MP have similar geometric conformations but exhibit entirely different photophysical properties upon excitation into the S1 state. In contrast to traditional excited state intramolecular proton transfer (ESIPT) in molecules that exhibit either single or dual fluorescence, HP has an unusual non-fluorescent property. Specifically, the ultrafast ESIPT process occurs in 158 fs and is followed by an intersystem crossing (ISC) component of 11.38 ps. In contrast to HP, MP undergoes only an 8 ps timescale process, which was attributed to interactions between solute and solvent. We concluded that this difference arises from intramolecular hydrogen bonds (IMHBs), which induce drastic structural alterntion upon excitation.
Collapse
|
9
|
Yin H, Shi Y, Wang Y. Time-dependent density functional theory study on the excited-state intramolecular proton transfer in salicylaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:280-284. [PMID: 24747849 DOI: 10.1016/j.saa.2014.03.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/08/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Time-dependent density functional theory method was performed to investigate the excited state intramolecular hydrogen bond dynamics of salicylaldehyde (SA). The geometric structures and IR spectra in the ground state S0 state and the excited state S1 state of SA are calculated using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) methods, respectively. In addition, the absorption and fluorescence peaks are also calculated using TDDFT methods. It is noted that the calculated large Stokes shift is in good agreement with the experimental results. Furthermore, our results have demonstrated that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which are distinct monitored by the formation and disappearance of the characteristic peaks of IR spectra involved in the formation of hydrogen bonds in different states and in the potential energy curves. We find that the hydrogen bonded quasi-aromatic chelating ring in the excited state becomes smaller which can facilitate the ESIPT process. The results presented here suggest that the ESIPT process of the SA molecule in the excited state can be attributed to the electronegativity change of O1 induced by excitation.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ye Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Pozdnyakov I, Aksenova Y, Ermolina E, Melnikov A, Kuznetsova R, Grivin V, Plyusnin V, Berezin M, Semeikin A, Chekalin S. Photophysics of diiodine-substituted fluorinated boron–dipyrromethene: A time resolved study. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Pozdnyakov IP, Pigliucci A, Tkachenko N, Plyusnin VF, Vauthey E, Lemmetyinen H. The photophysics of salicylic acid derivatives in aqueous solution. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1489] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Mukhopadhyay M, Mandal A, Banerjee D, Bhattacharyya SP, Mukherjee S. Effect of surfactant-perturbed nanocaging on the ground and excited state proton transfer reaction. J Phys Chem A 2008; 112:12543-9. [PMID: 19007198 DOI: 10.1021/jp806211v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of mixed cyclodextrin-surfactant systems on the ground and excited state proton transfer reactions of 4-methyl-2,6-diformylphenol (MFOH) in aqueous solution has been investigated by steady state and time-resolved fluorescence spectroscopy. It has been found that micellar media perturbs the solvation of MFOH and facilitates nanocaging. In the presence of micelle, MFOH preferentially resides in the interfacial region. Depending on the local pH due to compartmentalization of reaction media, normal or anionic form of MFOH dominates. Encapsulation of the probe within the cyclodextrin nanocavity enhances the shorter lifetime component of MFOH unexpectedly, which has been explained on the basis of reduced solvation and reduced dipolar effect due to confinement.
Collapse
Affiliation(s)
- M Mukhopadhyay
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | | | | | | | |
Collapse
|
13
|
Mitra S, Singh TS, Mandal A, Mukherjee S. Experimental and computational study on photophysical properties of substituted o-hydroxy acetophenone derivatives: Intramolecular proton transfer and solvent effect. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Mukhopadhyay M, Banerjee D, Mukherjee S. Proton-Transfer Reaction of 4-Methyl 2,6-Diformyl Phenol in Cyclodextrin Nanocage. J Phys Chem A 2006; 110:12743-51. [PMID: 17125287 DOI: 10.1021/jp063724r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here on the steady-state and time-resolved fluorescence studies on proton-transfer (PT) reaction of 4-methyl 2,6-diformyl phenol (MFOH) in confined nanocavities in three solvents, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), and water. Though DMSO and DMF individually interact with MFOH in a similar fashion, their modes of interaction get significantly modified in the presence of cyclodextrin (CD) nanocages. In DMSO, in the ground state, the solvated molecular anion of MFOH forms 1:1 inclusion complex with beta- or gamma-CD and attains greater stability compared to the normal form. In DMF, the solvated molecular anion gets converted to the H-bonded complex within the CD cavity resulting in a 50-nm blue shift in the absorption spectra. In the excited state, the anionic species gets more stabilized in DMSO while in DMF it is significantly destabilized in the presence of CDs. However, in case of water, MFOH gets trapped inside the water cages so that the CDs fail to complex with it effectively. There are also no changes in the excited-state lifetimes in water in the presence of CDs, but in case of DMSO and DMF, because of restricted rotation of the formyl group within the CD cavity, the contribution of the shorter lifetime components reduce significantly increasing the larger components. Some theoretical calculations at the AM1 level of approximation have also been carried out to demonstrate how the dipolar nature of the solvent influences excited-state PT in confined media.
Collapse
Affiliation(s)
- Madhuri Mukhopadhyay
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, India
| | | | | |
Collapse
|
15
|
Poór B, Michniewicz N, Kallay M, Buma WJ, Kubinyi M, Szemik-Hojniak A, Deperasiñska I, Puszko A, Zhang H. Femtosecond Studies of Charge-Transfer Mediated Proton Transfer in 2-Butylamino-6-methyl-4-nitropyridine N-Oxide. J Phys Chem A 2006; 110:7086-91. [PMID: 16737257 DOI: 10.1021/jp061409z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have unraveled the effects of an amino substituent in the ortho position on the excited-state dynamics of 4-nitropyridine N-oxide by studying the picosecond fluorescence kinetics and femtosecond transient absorption of a newly synthesized compound, 2-butylamino-6-methyl-4-nitropyridine N-oxide, and by quantum chemical calculations. Similar to the parent compound, the S(1) state of the target molecule has significant charge-transfer character and shows a large (approximately 8000 cm(-1)) static Stokes shift in acetonitrile. Analysis of the experimental and the theoretical results leads, however, to a new scenario in which this intramolecular charge transfer triggers in polar, aprotic solvents an ultrafast (around 100 fs) intramolecular proton transfer between the amino and the N-O group. The electronically excited N-OH tautomer is subsequently subject to solvent relaxation and decays with a lifetime of approximately 150 ps to the ground state.
Collapse
Affiliation(s)
- Benedek Poór
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|