1
|
López Peña HA, Shusterman JM, Ampadu Boateng D, Lao KU, Tibbetts KM. Coherent Control of Molecular Dissociation by Selective Excitation of Nuclear Wave Packets. Front Chem 2022; 10:859095. [PMID: 35449589 PMCID: PMC9016217 DOI: 10.3389/fchem.2022.859095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
We report on pump-probe control schemes to manipulate fragmentation product yields in p-nitrotoluene (PNT) cation. Strong field ionization of PNT prepares the parent cation in the ground electronic state, with coherent vibrational excitation along two normal modes: the C–C–N–O torsional mode at 80 cm−1 and the in-plane ring-stretching mode at 650 cm−1. Both vibrational wave packets are observed as oscillations in parent and fragment ion yields in the mass spectrum upon optical excitation. Excitation with 650 nm selectively fragments the PNT cation into C7H7+, whereas excitation with 400 nm selectively produces C5H5+ and C3H3+. In both cases the ion yield oscillations result from torsional wave packet excitation, but 650 and 400 nm excitation produce oscillations with opposite phases. Ab initio calculations of the ground and excited electronic potential energy surfaces of PNT cation along the C–C–N–O dihedral angle reveal that 400 nm excitation accesses an allowed transition from D0 to D6 at 0° dihedral angle, whereas 650 nm excitation accesses a strongly allowed transition from D0 to D4 at a dihedral angle of 90°. This ability to access different electronic excited states at different locations along the potential energy surface accounts for the selective fragmentation observed with different probe wavelengths. The ring-stretching mode, only observed using 800 nm excitation, is attributed to a D0 to D2 transition at a geometry with 90° dihedral angle and elongated C–N bond length. Collectively, these results demonstrate that strong field ionization induces multimode coherent excitation and that the vibrational wave packets can be excited with specific photon energies at different points on their potential energy surfaces to induce selective fragmentation.
Collapse
|
2
|
Voznyuk O, Jochim B, Zohrabi M, Broin A, Averin R, Carnes KD, Ben-Itzhak I, Wells E. Adaptive strong-field control of vibrational population in NO 2+. J Chem Phys 2019; 151:124310. [DOI: 10.1063/1.5115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. Voznyuk
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Bethany Jochim
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M. Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adam Broin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - R. Averin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - K. D. Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - I. Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - E. Wells
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| |
Collapse
|
3
|
Moore Tibbetts K, Xing X, Rabitz H. Laboratory transferability of optimally shaped laser pulses for quantum control. J Chem Phys 2014; 140:074302. [PMID: 24559348 DOI: 10.1063/1.4863137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents," that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.
Collapse
Affiliation(s)
| | - Xi Xing
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Moore Tibbetts K, Xing X, Rabitz H. Systematic Trends in Photonic Reagent Induced Reactions in a Homologous Chemical Family. J Phys Chem A 2013; 117:8205-15. [DOI: 10.1021/jp403824h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Xi Xing
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States
| | - Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States
| |
Collapse
|
5
|
Moore Tibbetts K, Xing X, Rabitz H. Optimal control of molecular fragmentation with homologous families of photonic reagents and chemical substrates. Phys Chem Chem Phys 2013; 15:18012-22. [DOI: 10.1039/c3cp52664j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
|
7
|
Brogaard RY, Møller KB, Sølling TI. Real-Time Probing of Structural Dynamics by Interaction between Chromophores. J Phys Chem A 2011; 115:12120-5. [DOI: 10.1021/jp2072588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Klaus B. Møller
- Department of Chemistry, Building 207, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Theis I. Sølling
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Plenge J, Wirsing A, Wagner-Drebenstedt I, Halfpap I, Kieling B, Wassermann B, Rühl E. Coherent control of the ultrafast dissociative ionization dynamics of bromochloroalkanes. Phys Chem Chem Phys 2011; 13:8705-14. [DOI: 10.1039/c0cp02742a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J Plenge
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kuroda DG, Singh CP, Peng Z, Kleiman VD. Exploring the role of phase modulation on photoluminescence yield. Faraday Discuss 2011; 153:61-72; discussion 73-91. [PMID: 22452074 DOI: 10.1039/c1fd00068c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an investigation to elucidate the mechanisms of control in phase-sensitive experiments in two molecular systems. A first inspection of optimization procedures yields the same experimental result: increase in the emission efficiency upon excitation by a phase modulated pulse in a two-photon transition. More detailed studies, which include power dependence, spectral response, one and two color pump-probe and pump-pump experiments show that while for one chromophore phase modulation leads to spectral matching between the two-photon cross section and the second order power spectrum for the other it provides a tool to manipulate the wavepacket dynamics in the excited state.
Collapse
Affiliation(s)
- D G Kuroda
- Department of Chemistry, Chemical Physics Center, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
10
|
Lozovoy VV, Zhu X, Gunaratne TC, Harris DA, Shane JC, Dantus M. Control of Molecular Fragmentation Using Shaped Femtosecond Pulses. J Phys Chem A 2008; 112:3789-812. [DOI: 10.1021/jp071691p] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vadim V. Lozovoy
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Xin Zhu
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Tissa C. Gunaratne
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - D. Ahmasi Harris
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Janelle C. Shane
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Marcos Dantus
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
11
|
Trallero C, Pearson BJ, Weinacht T, Gilliard K, Matsika S. Interpreting ultrafast molecular fragmentation dynamics with ab initio electronic structure calculations. J Chem Phys 2008; 128:124107. [DOI: 10.1063/1.2850524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Pearson BJ, Nichols SR, Weinacht T. Molecular fragmentation driven by ultrafast dynamic ionic resonances. J Chem Phys 2007; 127:131101. [DOI: 10.1063/1.2790419] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Cardoza D, Pearson BJ, Weinacht T. Dissociative wave packets and dynamic resonances. J Chem Phys 2007; 126:084308. [PMID: 17343449 DOI: 10.1063/1.2437198] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors examine the role of dynamic resonances in laser driven molecular fragmentation. The yields of molecular fragments can undergo dramatic changes as an impulsively excited dissociative wave packet passes through a dynamic resonance. The authors compare three different kinds of dynamic resonances in a series of molecular families and highlight the possibility of characterizing the dissociative wave function as it crosses the resonance location.
Collapse
Affiliation(s)
- David Cardoza
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|