1
|
Šupová M, Suchý T, Chlup H, Šulc M, Kotrč T, Šilingová L, Žaloudková M, Rýglová Š, Braun M, Chvátil D, Hrdlička Z, Houška M. The electron beam irradiation of collagen in the dry and gel states: The effect of the dose and water content from the primary to the quaternary levels. Int J Biol Macromol 2023; 253:126898. [PMID: 37729990 DOI: 10.1016/j.ijbiomac.2023.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The aim of our study was to describe the impact of collagen in the gel and dry state to various doses of electron beam radiation (1, 10 and 25 kGy) which are using for food processing and sterilization. The changes in the chemical compositions (water, amino acids, lipids, glycosaminoglycans) were analyzed and the changes in the structure (triple-helix or β-sheet, the integrity of the collagen) were assessed. Subsequently, the impact of the applied doses on the mechanical properties, stability in the enzymatic environment, swelling and morphology were determined. The irradiated gels evinced enhanced degrees of cross-linking with only partial degradation. Nevertheless, an increase was observed in their stability manifested via a higher degree of resistance to the enzymatic environment, a reduction in swelling and, in terms of the mechanical behaviour, an approximation to the non-linear behavior of native tissues. In contrast, irradiation in the dry state exerted a somewhat negative impact on the observed properties and was manifested mainly via the scission of the collagen molecule and via a lower degree of stability in the aqueous and enzymatic environments. Neither the chemical composition nor the morphology was affected by irradiation.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic.
| | - Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic; Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Hynek Chlup
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Miloslav Šulc
- Food Research Institute Prague, 102 00 Prague 10, Czech Republic
| | - Tomáš Kotrč
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Lucie Šilingová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Margit Žaloudková
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Šárka Rýglová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Martin Braun
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - David Chvátil
- Nuclear Physics Institute CAS, v.v.i., 250 68 Řež, Czech Republic
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology Prague, 166 28, Prague 6, Czech Republic
| | - Milan Houška
- Food Research Institute Prague, 102 00 Prague 10, Czech Republic
| |
Collapse
|
2
|
Shang L, Tang J, Wu J, Shang H, Huang X, Bao Y, Xu Z, Wang H, Yin J. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. BIOSENSORS 2022; 13:65. [PMID: 36671896 PMCID: PMC9856190 DOI: 10.3390/bios13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting the characteristic changes in tissue composition in cancerization. In addition to chemical composition, the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral technique is employed to obtain rich structural features and, combined with deep learning technology, to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen fibers changes from parallel to vertical during breast cancerization, and there are significant structural differences between cancerous and normal tissues, which is consistent with previous reports. Optical anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor's progression. To distinguish breast cancer tissue, a discrimination model is established based on a two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing the Raman spectra acquired at a set of linear polarization angles varying from 0° to 360°. As a result, an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure and components of tissues, innovatively improving the identification and automatic diagnosis of breast cancer with label-free probing and analysis.
Collapse
Affiliation(s)
- Linwei Shang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinlan Tang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinjin Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hui Shang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210016, China
| | - Yilin Bao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhibing Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Huijie Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jianhua Yin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
3
|
Li J, Tian Z, Yang H, Duan L, Liu Y. Infiltration of laponite: An effective approach to improve the mechanical properties and thermostability of collagen hydrogel. J Appl Polym Sci 2022. [DOI: 10.1002/app.53366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jiao Li
- Stomatological Hospital of Chongqing Medical University Chongqing People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing People's Republic of China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an People's Republic of China
| | - Huan Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences Southwest University Chongqing People's Republic of China
| | - Yunfei Liu
- Stomatological Hospital of Chongqing Medical University Chongqing People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing People's Republic of China
| |
Collapse
|
4
|
Zheng F, Yang X, Li J, Tian Z, Xiao B, Yi S, Duan L. Coordination with zirconium: A facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int J Biol Macromol 2022; 205:595-603. [PMID: 35217081 DOI: 10.1016/j.ijbiomac.2022.02.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The poor mechanical property and thermostability restricted applications of gelatin hydrogel. Herein, a facile and inexpensive approach of immerging cooling induced gelatin hydrogels into Zr(SO4)2 dilute solution was applied to overcome these shortages. After this treatment, the micropores in hydrogel decreased to tens of microns while the water content slightly decreased. XPS results revealed that the coordination bonds formed between amino or carboxyl groups of gelatins and Zr4+. After immerging in 0.06 M Zr4+ solution, mechanical tests showed that the elastic modulus, compressive modulus and compressive strength of hydrogel were about 400, 1192 and 476 kPa, respectively, which were approximate 100, 11 and 5 times larger than those of pure gelatin. The DSC data indicated that the thermoreversible temperature of triple helix structure in gelatin was improved from about 30 °C to 55 °C. More importantly, the rheological temperature sweep test revealed that hydrogels with 0.06 M Zr4+ treatment can maintain the hydrogel state without melting even at 80 °C. CCK-8 tests and Calcein-AM/PI double-stain experiments demonstrated Zr4+ coordination was non-cytotoxic. These promising data indicated this nontoxic method was efficient and had potential to fabricate gelatin related materials for further application.
Collapse
Affiliation(s)
- Fan Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Ma S, Hu H, Wu J, Li X, Ma X, Zhao Z, Liu Z, Wu C, Zhao B, Wang Y, Jing W. Functional extracellular matrix hydrogel modified with MSC-derived small extracellular vesicles for chronic wound healing. Cell Prolif 2022; 55:e13196. [PMID: 35156747 PMCID: PMC9055911 DOI: 10.1111/cpr.13196] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Diabetic wound healing remains a global challenge in the clinic and in research. However, the current medical dressings are difficult to meet the demands. The primary goal of this study was to fabricate a functional hydrogel wound dressing that can provide an appropriate microenvironment and supplementation with growth factors to promote skin regeneration and functional restoration in diabetic wounds. MATERIALS AND METHODS Small extracellular vesicles (sEVs) were bound to the porcine small intestinal submucosa-based hydrogel material through peptides (SC-Ps-sEVs) to increase the content and achieve a sustained release. NIH3T3 cell was used to evaluate the biocompatibility and the promoting proliferation, migration and adhesion abilities of the SC-Ps-sEVs. EA.hy926 cell was used to evaluate the stimulating angiogenesis of SC-Ps-sEVs. The diabetic wound model was used to investigate the function/role of SC-Ps-sEVs hydrogel in promoting wound healing. RESULTS A functional hydrogel wound dressing with good mechanical properties, excellent biocompatibility and superior stimulating angiogenesis capacity was designed and facilely fabricated, which could effectively enable full-thickness skin wounds healing in diabetic rat model. CONCLUSIONS This work led to the development of SIS, which shows an unprecedented combination of mechanical, biological and wound healing properties. This functional hydrogel wound dressing may find broad utility in the field of regenerative medicine and may be similarly useful in the treatment of wounds in epithelial tissues, such as the intestine, lung and liver.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of StomatologyThe Second Hospital of Tianjin Medical UniversityHexi DistrictTianjinChina
| | - Han Hu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Jinzhe Wu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xuewen Li
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xinying Ma
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zhezhe Zhao
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zihao Liu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Chenxuan Wu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd.BeijingChina
| | - Yonglan Wang
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd.BeijingChina
| |
Collapse
|
6
|
Wang Y, Lu F, Hu E, Yu K, Li J, Bao R, Dai F, Lan G, Xie R. Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16048-16061. [PMID: 33813831 DOI: 10.1021/acsami.1c00420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given that many people suffer from extensive skin damage, wound repair has drawn tremendous attention in research. Among the various assistant dressing materials that promote healing, a porcine acellular dermal matrix (PADM), as a skin substitute, can efficiently accelerate healing by promoting cell migration and proliferation. However, a simple, low-cost preparation process remains a challenge facing PADM development, particularly because of the inferior elasticity. To overcome these drawbacks, a CaCl2-ethanol-H2O solution (ternary solution) combined with an additional enzyme treatment was used to obtain a transparent, porous, and elastic PADM that retained the major extracellular matrix composition of the dermis. Our results indicated that alterations in the fiber organization and secondary structural changes in the collagen occurred after treatment. Furthermore, the in vivo wound healing and histological analyses clearly revealed an extremely expedited wound repair process following the application of the biocompatible PADM. In conclusion, this study provides new insights into the development of a transparent PADM with a porous structure and good elasticity that can be used as a skin substitute to accelerate the wound healing process. Moreover, this effective technique could potentially be used to extrapolate other decellularized materials in the future.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, BeiBei District, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
7
|
Cappa F, Paganoni I, Carsote C, Schreiner M, Badea E. Studies on the effect of dry-heat ageing on parchment deterioration by vibrational spectroscopy and micro hot table method. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Barón M, Morales V, Fuentes MV, Linares M, Escribano N, Ceballos L. The influence of irrigation solutions in the inorganic and organic radicular dentine composition. AUST ENDOD J 2020; 46:217-225. [PMID: 31984636 DOI: 10.1111/aej.12395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to analyse changes in radicular dentine composition after different irrigation regimes using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Dentine slices from human single-root teeth were immersed in: (i) 5.25% sodium hypochlorite (NaOCl) for 1, 5 and 20 min; (ii) 17% EDTA for 1 min; and (iii) 5.25% NaOCl for 20 min, and 17% EDTA and 5.25% NaOCl, both for 1 min. Carbonate/mineral, Amide I/mineral and Amide III/CH2 ratios were determined using ATR-FTIR before and after immersion in the irrigation solutions tested. Results showed that 5.25% NaOCl significantly decreased carbonate/mineral, Amide I/mineral and Amide III/CH2 ratios (P < 0.05). Application of 17% EDTA produced no change in carbonate/mineral ratio (P = 0.120), while an increase in Amide I/mineral in apical third (P = 0.002) and Amide III/CH2 (P < 0.001) was observed. The combination of NaOCl, EDTA and NaOCl increased carbonate/mineral ratio in coronal third (P = 0.037), and Amide I/mineral (P = 0.003) and Amide III/CH2 (P = 0.001) ratios. In conclusion, irrigation solutions tested significantly affected radicular dentine composition.
Collapse
Affiliation(s)
- Marta Barón
- Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Victoria Morales
- Group of Chemical and Environmental Engineering, School of Experimental Sciences and Technology, Rey Juan Carlos University, Madrid, Spain
| | - Mª Victoria Fuentes
- Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - María Linares
- Group of Chemical and Environmental Engineering, School of Experimental Sciences and Technology, Rey Juan Carlos University, Madrid, Spain
| | - Nuria Escribano
- Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| | - Laura Ceballos
- Faculty of Health Sciences, IDIBO Research Group, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
9
|
Lalande M, Schwob L, Vizcaino V, Chirot F, Dugourd P, Schlathölter T, Poully J. Direct Radiation Effects on the Structure and Stability of Collagen and Other Proteins. Chembiochem 2019; 20:2972-2980. [DOI: 10.1002/cbic.201900202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mathieu Lalande
- CIMAP LaboratoryUMR 6252CEA/CNRS/ENSICAEN/Université de Caen Normandie) Boulevard Becquerel 14070 Caen France
| | - Lucas Schwob
- Helmholtz AssociationDeutsches Elektronen-Synchrotron (DESY) Notkestrasse 85 22607 Hamburg Germany
| | - Violaine Vizcaino
- CIMAP LaboratoryUMR 6252CEA/CNRS/ENSICAEN/Université de Caen Normandie) Boulevard Becquerel 14070 Caen France
| | - Fabien Chirot
- Université Claude Bernard Lyon 1ENS de LyonUMR 5280 Institut des Sciences Analytiques 5, rue de la Doua 69100 Villeurbanne France
| | - Philippe Dugourd
- Université Claude Bernard Lyon 1CNRSUMR 5306 Institut Lumière Matière 10 rue Ada Byron 69622 Villeurbanne Cedex France
| | - Thomas Schlathölter
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Jean‐Christophe Poully
- CIMAP LaboratoryUMR 6252CEA/CNRS/ENSICAEN/Université de Caen Normandie) Boulevard Becquerel 14070 Caen France
| |
Collapse
|
10
|
S. N, Easwaramoorthi S, Rao JR, Thanikaivelan P. Probing visible light induced photochemical stabilization of collagen in green solvent medium. Int J Biol Macromol 2019; 131:779-786. [DOI: 10.1016/j.ijbiomac.2019.03.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
|
11
|
Duan L, Xiang H, Yang X, Liu L, Tian Z, Tian H, Li J. The influences of 3,4-dihydroxybenzaldehyde on the microstructure and stability of collagen fibrils. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Yu D, Brown EB, Huxlin KR, Knox WH. Tissue effects of intra-tissue refractive index shaping (IRIS): insights from two-photon autofluorescence and second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:855-867. [PMID: 30800519 PMCID: PMC6377903 DOI: 10.1364/boe.10.000855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 05/05/2023]
Abstract
Intra-tissue refractive index shaping (IRIS) is a novel, non-ablative form of vision correction by which femtosecond laser pulses are tightly focused into ocular tissues to induce localized refractive index (RI) change via nonlinear absorption. Here, we examined the effects of Blue-IRIS on corneal microstructure to gain insights into underlying mechanisms. Three-layer grating patterns were inscribed with IRIS ~180 µm below the epithelial surface of ex vivo rabbit globes using a 400 nm femtosecond laser. Keeping laser power constant at 82 mW in the focal volume, multiple patterns were written at different scan speeds. The largest RI change induced in this study was + 0.011 at 20 mm/s. After measuring the phase change profile of each inscribed pattern, two-photon excited autofluorescence (TPEF) and second harmonic generation (SHG) microscopy were used to quantify changes in stromal structure. While TPEF increased significantly with induced RI change, there was a noticeable suppression of SHG signal in IRIS treated regions. We posit that enhancement of TPEF was due to the formation of new fluorophores, while decreases in SHG were most likely due to degradation of collagen triple helices. All in all, the changes observed suggest that IRIS works by inducing a localized, photochemical change in collagen structure.
Collapse
Affiliation(s)
- Dan Yu
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Krystel R. Huxlin
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Wayne H. Knox
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
13
|
Redha O, Strange A, Maeva A, Sambrook R, Mordan N, McDonald A, Bozec L. Impact of Carbamide Peroxide Whitening Agent on Dentinal Collagen. J Dent Res 2019; 98:443-449. [DOI: 10.1177/0022034518822826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carbamide peroxide (CP) is widely used as a tooth-whitening agent in self-administered tooth-bleaching products. In this study, the effects of 5% and 10% CP on dentinal collagen structure and chemical properties were evaluated in vitro. Thirty-five intact teeth were exposed to 2 whitening protocols (2 or 4 h daily) with either 5% or 10% CP gel for 1 wk. Shade changes before and after the whitening protocol were captured colorimetrically using a spectroshade. Collagen scaffold models and demineralized dentine disc samples were prepared and exposed to CP droplets (5% or 10%). Structural changes were investigated using electron microscopy. Finally, mineralized dentine disc samples were prepared postbleaching to assess chemical changes resulting from CP exposure in dentinal collagen using Raman spectroscopy. Results showed a difference in tooth shade when exposed to 5% and 10% CP whitening protocols, with a significantly ( P ≤ 0.01) greater change reported for the 10% CP/4-h group. Imaging of the collagen scaffold model following exposure to CP showed a gelatinization process indicating that the free radical by-products from CP are able to disrupt the quaternary structure of noncrosslinked collagen. The most significant damage on the collagen scaffold was seen for the 10% CP exposure for 4 h. Imaging of the demineralized discs displayed the same glassy amorphous layer appearance as found in the collagen scaffold. Raman spectra of the mineralized dentine discs showed a significant decrease ( P ≤ 0.01) in the integrated area of amide I and amide III values in the 4 test groups following CP application. Amide I was more affected as both the exposure time and concentration of CP increased. Despite the claimed safety of whitening agents, this in vitro study concludes that even low concentrations of CP result in a deleterious change in dentinal collagen.
Collapse
Affiliation(s)
- O. Redha
- Division of Prosthodontics, UCL Eastman Dental Institute, University College London, London, UK
| | - A. Strange
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - A. Maeva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - R. Sambrook
- Division of Prosthodontics, UCL Eastman Dental Institute, University College London, London, UK
| | - N. Mordan
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - A. McDonald
- Division of Prosthodontics, UCL Eastman Dental Institute, University College London, London, UK
| | - L. Bozec
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Duan L, Yuan Q, Xiang H, Yang X, Liu L, Li J. Fabrication and characterization of a novel collagen-catechol hydrogel. J Biomater Appl 2017; 32:862-870. [DOI: 10.1177/0885328217747125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hongzhao Xiang
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Xiao Yang
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Lindong Liu
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Jiao Li
- College of Textiles and Garments, Southwest University, Chongqing, China
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Prigipaki A, Papanikolopoulou K, Mossou E, Mitchell EP, Forsyth VT, Selimis A, Ranella A, Mitraki A. Laser processing of protein films as a method for accomplishment of cell patterning at the microscale. Biofabrication 2017; 9:045004. [PMID: 28837041 DOI: 10.1088/1758-5090/aa8859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we propose a photostructuring approach for protein films based on a treatment with nanosecond pulses of a KrF excimer laser. As a model protein we used an amyloid fibril-forming protein. Laser treatment induced a foaming of the sample surface exhibiting an interconnected fibrous mesh with a high degree of control and precision. The surface foaming was well characterized by scanning electron microscopy, atomic force microscopy, laser induced fluorescence and contact angle measurements. The laser irradiated areas of the protein films acquired new morphological and physicochemical properties that could be exploited to fulfill unmet challenges in the tissue engineering field. In this context we subsequently evaluated the response of NIH/3T3 fibroblast cell line on the processed film. Our results show a strong and statistically significant preference for adhesion and proliferation of cells on the irradiated areas compared to the non-irradiated ones. We propose that this strategy can be followed to induce selective cell patterning on protein films at the microscale.
Collapse
Affiliation(s)
- Ariadne Prigipaki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 710 03 Heraklion, Crete, Greece. Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), PO Box 527, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Flanagan CD, Unal M, Akkus O, Rimnac CM. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage. J Mech Behav Biomed Mater 2017; 75:314-321. [PMID: 28772165 DOI: 10.1016/j.jmbbm.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. OBJECTIVE To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. METHODS Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm-1 and 2700-3800cm-1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. RESULTS Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p < 0.001) and organic matrix-bound water (3220/2949: 0.109 ± 0.012 vs 0.131 ± 0.008, p < 0.001). Organic matrix-bound water increased secondary to 25kGy irradiation (3220/2949: 0.105 ± 0.010 vs 0.1161 ± 0.009, p = 0.003). Organic matrix-bound water was correlated positively with collagen denaturation (r = 0.514, p < 0.001). CONCLUSIONS Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients.
Collapse
Affiliation(s)
- Christopher D Flanagan
- Department of Orthopaedics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ozan Akkus
- Department of Orthopaedics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Clare M Rimnac
- Department of Orthopaedics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Duconseille A, Andueza D, Picard F, Santé-Lhoutellier V, Astruc T. Molecular changes in gelatin aging observed by NIR and fluorescence spectroscopy. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Duan L, Yuan J, Yang X, Cheng X, Li J. Interaction study of collagen and sericin in blending solution. Int J Biol Macromol 2016; 93:468-475. [PMID: 27601133 DOI: 10.1016/j.ijbiomac.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/29/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Abstract
The interactions of collagen and sericin were studied by fluorescence spectra, ultraviolet spectra, FTIR spectra and dynamic light scattering. The fluorescence quenching in emission spectra and red-shift (283-330nm) in synchronous fluorescence spectra suggested the Tyr of collagen and sericin overlapped with a distance of 3Å, generating excimer. The overlapped Tyr of collagen and sericin decreased the hydrophobicity of collagen, which resulted in the red-shifts (233-240nm) in ultraviolet spectra. Moreover, the red-shifts of amide bands of collagen in FTIR spectra indicated the hydrogen bonds of collagen were weaken and it could also be explained by the overlapped Tyr. The results of 2D-FTIR spectra demonstrated the backbone of collagen molecule was varied and the most susceptible structure of collagen was the triple helix with the presence of sericin. Based on dynamic light scattering, we conjectured large pure collagen aggregates were replaced by hybrid aggregates of collagen and sericin particles after the addition of sericin. With ascending sericin ratio, the diameters of the hybrid aggregates increased and attained maximum with 60% ratio of sericin, which were on account of the increasing excimer number. The results of DSC demonstrated the presence of sericin enhanced the thermal stability of collagen.
Collapse
Affiliation(s)
- Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Jingjie Yuan
- Chongqing Special Equipment Inspection and Research Institute, Chongqing 401121, PR China
| | - Xiao Yang
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Xinjian Cheng
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China; The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, PR China.
| |
Collapse
|
19
|
Unal M, Jung H, Akkus O. Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone's Collagen. J Bone Miner Res 2016; 31:1015-25. [PMID: 26678707 DOI: 10.1002/jbmr.2768] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
Abstract
Raman spectroscopy has become a powerful tool in the assessment of bone quality. However, the use of Raman spectroscopy to assess collagen quality in bone is less established than mineral quality. Because postyield mechanical properties of bone are mostly determined by collagen rather than the mineral phase, it is essential to identify new spectroscopic biomarkers that help infer the status of collagen quality. Amide I and amide III bands are uniquely useful for collagen conformational analysis. Thus, the first aim of this work was to identify the regions of amide bands that are sensitive to thermally induced denaturation. Collagen sheets and bone were thermally denatured to identify spectral measures that change significantly following denaturation. The second aim was to assess whether mechanical damage denatures the collagen phase of bone, as reflected by the molecular spectroscopic biomarkers identified in the first aim. The third aim was to assess the correlation between these new spectroscopic biomarkers and postyield mechanical properties of cortical bone. Our results revealed five peaks whose intensities were sensitive to thermal and mechanical denaturation: ∼1245, ∼1270, and ∼1320 cm(-1) in the amide III band, and ∼1640 and ∼1670 cm(-1) in the amide I band. Four peak intensity ratios derived from these peaks were found to be sensitive to denaturation: 1670/1640, 1320/1454, 1245/1270, and 1245/1454. Among these four spectral biomarkers, only 1670/1640 displayed significant correlation with all postyield mechanical properties. The overall results showed that these peak intensity ratios can be used as novel spectroscopic biomarkers to assess collagen quality and integrity. The changes in these ratios with denaturation may reflect alterations in the collagen secondary structure, specifically a transition from ordered to less-ordered structure. The overall results clearly demonstrate that this new spectral information, specifically the ratio of 1670/1640, can be used to understand the involvement of collagen quality in the fragility of bone. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Orthopaedic Bioengineering Laboratory, Case Western Reserve University, Cleveland, OH, USA
| | - Hyungjin Jung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Orthopaedic Bioengineering Laboratory, Case Western Reserve University, Cleveland, OH, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Orthopaedic Bioengineering Laboratory, Case Western Reserve University, Cleveland, OH, USA.,Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
20
|
Kołbuk D, Guimond-Lischer S, Sajkiewicz P, Maniura-Weber K, Fortunato G. Morphology and surface chemistry of bicomponent scaffolds in terms of mesenchymal stromal cell viability. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515621571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological interaction between cells and scaffolds is mediated through events at surfaces. Proteins present in the culture medium adsorb on substrates, generating a protein adlayer that triggers further downstream events governing cell adhesion. Polymer blends often combine the properties of the individual components, for example, can provide mechanical as well as surface properties in one fibre. Therefore, mixtures of synthetic polycaprolactone and gelatin as a denatured form of collagen were electrospun at selected conditions and polymer weight ratios. Fibre morphologies and chemical properties of the surfaces were analysed. These scaffolds were seeded with human mesenchymal stromal cells and their viability was studied. Gelatin addition to polycaprolactone leads to a reduction in fibre diameter. A linear increase in gelatin at the fibre surface was observed in function of the weighed polymers, except for polycaprolactone/gelatin fibres incorporating equal weight ratios. Thereby, a depletion of gelatin at the fibre surface is stated for equally mixed polymers. The depletion of gelatin at the fibre surface is most probably due to hydrophobic interactions between hydrophobic segments of polycaprolactone and gelatin, affecting the spinning mechanism and thus fibre structure. Furthermore, polycaprolactone/gelatin blends show enhanced wettability properties compared to pure gelatin, at least partly due to molecular segregation. Results of in vitro studies reveal an increase in cellular viability and proliferation for cells cultivated on nanofibres containing gelatin, caused by the cell-attractive surface composition as well as the hydrophilic nature of the scaffolds. Contact guidance of cells seeded on parallelised fibres is observed, and DNA tests show evidently enhanced cell numbers on nanofibres containing 20 wt% of gelatin.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Advanced Fibres, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| | - Stefanie Guimond-Lischer
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Katharina Maniura-Weber
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Protection and Physiology, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| |
Collapse
|
21
|
|
22
|
Shepherd D, Shepherd J, Ghose S, Kew S, Cameron R, Best S. The process of EDC-NHS Cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment. APL MATERIALS 2015; 3:014902. [PMID: 25506518 PMCID: PMC4262854 DOI: 10.1063/1.4900887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy (AFM) and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.
Collapse
Affiliation(s)
- D.V. Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - J.H. Shepherd
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - S. Ghose
- Tigenix Ltd, Byron House, Cambridge, UK
| | - S.J. Kew
- Tigenix Ltd, Byron House, Cambridge, UK
| | - R.E. Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - S.M. Best
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Manickavasagam A, Hirvonen LM, Melita LN, Chong EZ, Cook RJ, Bozec L, Festy F. Multimodal optical characterisation of collagen photodegradation by femtosecond infrared laser ablation. Analyst 2014; 139:6135-43. [PMID: 25318007 DOI: 10.1039/c4an01523a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collagen is a structural component of the human body, as a connective tissue it can become altered as a result of pathophysiological conditions. Although the collagen degradation mechanism is not fully understood, it plays an important role in ageing, disease progression and applications in therapeutic laser treatments. To fully understand the mechanism of collagen alteration, in our study photo-disruptive effects were induced in collagen I matrix by point-irradiation with a femtosecond Ti-sapphire laser under controlled laser ablation settings. This was followed by multi-modal imaging of the irradiated and surrounding areas to analyse the degradation mechanism. Our multi-modal methodology was based on second harmonic generation (SHG), scanning electron microscope (SEM), autofluorescence (AF) average intensities and the average fluorescence lifetime. This allowed us to quantitatively characterise the degraded area into four distinct zones: (1) depolymerised zone in the laser focal spot as indicated by the loss of SHG signal, (2) enhanced crosslinking zone in the inner boundary of the laser induced cavity as represented by the high fluorescence ring, (3) reduced crosslinking zone formed the outer boundary of the cavity as marked by the increased SHG signal and (4) native collagen. These identified distinct zones were in good agreement with the expected photochemical changes shown using Raman spectroscopy. In addition, imaging using polarisation-resolved SHG (p-SHG) revealed both a high degree of fibre re-orientation and a SHG change in tensor ratios around the irradiation spot. Our multi-modal optical imaging approach can provide a new methodology for defining distinct zones that can be used in a clinical setting to determine suitable thresholds for applying safe laser treatments without affecting the surrounding tissues. Furthermore this technique can be extended to address challenges observed in collagen based tissue engineering and used as a minimally invasive diagnostic tool to characterise diseased and non-diseased collagen rich tissues.
Collapse
Affiliation(s)
- A Manickavasagam
- Biomaterial, Biomimetics & Biophotonics Division, King's College London Dental Institute, London, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Moini M, Rollman CM, Bertrand L. Assessing the Impact of Synchrotron X-ray Irradiation on Proteinaceous Specimens at Macro and Molecular Levels. Anal Chem 2014; 86:9417-22. [DOI: 10.1021/ac502854d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mehdi Moini
- George Washington University, Department of Forensic
Sciences, Washington, D.C., 20007, United States
| | - Christopher M. Rollman
- George Washington University, Department of Forensic
Sciences, Washington, D.C., 20007, United States
| | - Loïc Bertrand
- IPANEMA,
CNRS,
MCC, USR 3461, BP48 Saint-Aubin, F-91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, BP48 Saint-Aubin, F-91192 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Kołbuk D, Sajkiewicz P, Maniura-Weber K, Fortunato G. Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.04.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Sionkowska A, Kozłowska J. Properties and modification of porous 3-D collagen/hydroxyapatite composites. Int J Biol Macromol 2012; 52:250-9. [PMID: 23063427 DOI: 10.1016/j.ijbiomac.2012.10.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/20/2012] [Accepted: 10/02/2012] [Indexed: 01/13/2023]
Abstract
A freeze drying technique was used to form porous three-dimensional collagen matrixes modified by the addition of a variable amount of nano-hydroxyapatite. For chemical cross-linking EDC/NHS were used. Physical cross-linking was achieved by dehydrothermal treatment. Mechanical properties, morphology, dissolution, porosity, density, enzymatic degradation and swelling properties of materials have been studied after cross-linking. The density of scaffolds and its compressive modulus increased with an increasing amount of hydroxyapatite and collagen concentration in the composite scaffold, while the swelling ratio and porosity decreased. The studied scaffolds dissolved slowly in PBS solution. DHT cross-linked collagen matrices showed a much faster degradation rate after exposure to collagenase than the EDC cross-linked samples.
Collapse
Affiliation(s)
- A Sionkowska
- Faculty of Chemistry, N. Copernicus University, Gagarin 7, 87-100 Torun, Poland.
| | | |
Collapse
|
27
|
Zhang X, Xu L, Huang X, Wei S, Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J Biomed Mater Res A 2012; 100:2960-9. [PMID: 22696280 DOI: 10.1002/jbm.a.34243] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/11/2022]
Abstract
Under γ-irradiation, concentrated collagen solutions yielded collagen hydrogels and liquid products. The molecular structure of collagen hydrogels and the source of the liquid products were studied. Furthermore, preliminary biological properties of the hydrogels were investigated. The results revealed that crosslinking occurred to form collagen hydrogel and the crosslinking density increased with the increasing of the absorbed dose, and the collagen hydrogels showed enhanced mechanical properties. Meanwhile, collagen underwent radiation degradation and water was squeezed out from hydrogel by contraction of hydrogel, yielding liquid products. Collagen hydrogels induced by γ-irradiation maintained the backbone structure of collagen, and tyrosine partially involved in crosslinking. The irradiated collagen hydrogels have higher denatured temperature, can promote fibroblasts proliferation, and their degradation rate in vivo depended on the absorbed dose. The comprehensive results suggested that the collagen hydrogels prepared by radiation crosslinking preserved the triple helical conformation, possessed improved thermal stability and mechanical properties, excellent biocompatibility, which is expected to favor its application as biomaterials.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Tian H, Chen Y, Ding C, Li G. Interaction study in homogeneous collagen/chondroitin sulfate blends by two-dimensional infrared spectroscopy. Carbohydr Polym 2012; 89:542-50. [DOI: 10.1016/j.carbpol.2012.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
|
29
|
Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates. Anal Bioanal Chem 2011; 402:1433-41. [DOI: 10.1007/s00216-011-5319-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
30
|
Hovhannisyan V, Ghazaryan A, Chen YF, Chen SJ, Dong CY. Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser. OPTICS EXPRESS 2010; 18:24037-47. [PMID: 21164751 DOI: 10.1364/oe.18.024037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photophysical mechanisms of collagen photomodification (CFP) by the use of a 80 MHz, 780 nm femtosecond titanium-sapphire laser were investigated. Our observation that the decrease in collagen second harmonic generation and increase in two-photon autofluorescence intensity occurred primarily at sites where photoproducts were present suggested that the photoproducts may act to facilitate the CFP process. Laser power study of CFP indicated that the efficiency of the process depended on the sixth power of the laser intensity. Furthermore, it was demonstrated that CFP can be used for bending and cutting of collagen fibers and creating 3D patterns within collagen matrix with high precision (~2 μm).
Collapse
|
31
|
Oujja M, Pouli P, Domingo C, Fotakis C, Castillejo M. Analytical spectroscopic investigation of wavelength and pulse duration effects on laser-induced changes of egg-yolk-based tempera paints. APPLIED SPECTROSCOPY 2010; 64:528-536. [PMID: 20482972 DOI: 10.1366/000370210791211628] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The application of laser cleaning methodologies to light-sensitive substrates such as those encountered in artistic paintings is an extremely delicate issue. The cleaning of paintings and polychromes is an irreversibly invasive intervention; therefore, prior to the implementation of laser cleaning methodologies, a thorough characterization of the interaction between laser pulses and painting components is required. In this work, the modifications induced by irradiation with pulses of 150 picoseconds (at 1064 and 213 nm) and 15 nanoseconds (at 213 nm) on unvarnished aged model egg-yolk-based paints were examined following a spectroanalytical approach. Laser-induced chemical changes on samples of unpigmented and widely used artist's pigment temperas were investigated by spectrofluorimetry and Fourier transform Raman spectroscopy, while color changes were quantified by colorimetry. Noticeable modifications of the Raman and fluorescence bands attributed to pigments are absent except for vermillion, for which the pigment bands tend to disappear upon irradiation at 1064 nm. Interestingly, no discoloration was observed on most of the pigments upon irradiation at 213 nm (150 ps), including the light-sensitive vermillion, while no indications of carbonization or charring of the paint layers, which could give rise to amorphous carbon bands, were obtained at any of the irradiation conditions explored. Comparison of the results using the two different pulse durations and wavelengths illustrates the participation of mechanisms of diverse origin according to the chemical composition of the pigment and highlights the importance of the optimization of the laser parameters, specifically fluence, pulse duration, and wavelength, in conservation treatments of paintings.
Collapse
Affiliation(s)
- Mohamed Oujja
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
32
|
Kumar MR, Merschrod EF, Poduska KM. Correlating mechanical properties with aggregation processes in electrochemically fabricated collagen membranes. Biomacromolecules 2009; 10:1970-5. [PMID: 19453165 DOI: 10.1021/bm900379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show that mechanical stiffness is a useful metric for characterizing complex collagen assemblies, providing insight about aggregation products and pathways in collagen-based materials. This study focuses on mechanically robust collagenous membranes produced by an electrochemical synthesis process. Changing the duration of the applied electric field, or adjusting the electrolyte composition (by adding Ca(2+), K(+), or Na(+) or by changing pH), produces membranes with a range of Young's moduli as determined from force-displacement measurements with an atomic force microscope. The structural organization, characterized by UV-visible spectroscopy, Raman spectroscopy, optical microscopy, and atomic force microscopy, correlates with the mechanical stiffness. These data provide insights into the relative importance of different aggregation pathways enabled by our multiparameter electrochemically induced collagen assembly process.
Collapse
Affiliation(s)
- M Ramesh Kumar
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | | | | |
Collapse
|
33
|
Yang X, Wu D, Du Z, Li R, Chen X, Li X. Spectroscopy study on the interaction of quercetin with collagen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3431-3435. [PMID: 19326949 DOI: 10.1021/jf803671s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to understand the interaction between quercetin and collagen clearly, the UV-vis, FTIR-HATR, and fluorescence spectroscopy were used, and the data obtained by these experiments suggested that quercetin could bind to collagen. Results of FTIR-HATR and UV-vis absorption spectra suggested that the interaction of quercetin and collagen did not alter the conformation of collagen. The fluorescence spectra revealed that collagen could cause the quenching of quercetin fluorescence through a dynamic quenching procedure. The calculated quenching constant K(SV) and bimolecular quenching rate constant k(q) suggested that diffusion played a major role in quenching. In addition, the interaction of quercetin and collagen was evaluated by calculating (determining) the number of binding sites (n) and apparent binding constant K(A).
Collapse
Affiliation(s)
- Xiaozhan Yang
- Institute of Materia Medica, College of Pharmay, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Baker HR, S EFM, Poduska KM. Electrochemically controlled growth and positioning of suspended collagen membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:2970-2972. [PMID: 18324862 DOI: 10.1021/la703743m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two independently recognized in vitro polymer aggregation variables, electric field and pH, can be used in concert to produce suspended membranes from solutions of type I collagen monomers, without need of a supporting substrate. A collagen network film can form at the alkaline-acidic pH interface created during the normal course of water electrolysis with parallel plate electrodes, and the anchoring location can be controlled by adjusting the bulk electrolyte pH. Electrosynthesized films remain intact upon drying and rehydration and function as ion-separation membranes even in submillimeter channels. This approach could benefit lab-on-a-chip technologies for the rational placement of membranes in microfluidic devices.
Collapse
Affiliation(s)
- Holly R Baker
- Department of Physics and Physical Oceanography and Department of Chemistry, Memorial University of Newfoundland, St. John's NL A1B 3X7, Canada
| | | | | |
Collapse
|
36
|
Gaspard S, Oujja M, Abrusci C, Catalina F, Lazare S, Desvergne J, Castillejo M. Laser induced foaming and chemical modifications of gelatine films. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|