1
|
Golczak A, Prukała D, Sikorska E, Gierszewski M, Cherkas V, Kwiatek D, Kubiak A, Varma N, Pędziński T, Murphree S, Cibulka R, Mrówczyńska L, Kolanowski JL, Sikorski M. Tetramethylalloxazines as efficient singlet oxygen photosensitizers and potential redox-sensitive agents. Sci Rep 2023; 13:13426. [PMID: 37591918 PMCID: PMC10435492 DOI: 10.1038/s41598-023-40536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Tetramethylalloxazines (TMeAll) have been found to have a high quantum yield of singlet oxygen generation when used as photosensitizers. Their electronic structure and transition energies (S0 → Si, S0 → Ti, T1 → Ti) were calculated using DFT and TD-DFT methods and compared to experimental absorption spectra. Generally, TMeAll display an energy diagram similar to other derivatives belonging to the alloxazine class of compounds, namely π,π* transitions are accompanied by closely located n,π* transitions. Photophysical data such as quantum yields of fluorescence, fluorescence lifetimes, and nonradiative rate constants were also studied in methanol (MeOH), acetonitrile (ACN), and 1,2-dichloroethane (DCE). The transient absorption spectra were also analyzed. To assess cytotoxicity of new compounds, a hemolytic assay was performed using human red blood cells (RBC) in vitro. Subsequently, fluorescence lifetime imaging experiments (FLIM) were performed on RBC under physiological and oxidative stress conditions alone or in the presence of TMeAll allowing for pinpointing changes caused by those compounds on the intracellular environment of these cells.
Collapse
Affiliation(s)
- Anna Golczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Dorota Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Ewa Sikorska
- Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poznan, Poland
| | - Mateusz Gierszewski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland
| | - Volodymyr Cherkas
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Dorota Kwiatek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Shaun Murphree
- Department of Chemistry, Allegheny College, 520 N. Main Street, Meadville, PA, USA
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague 6, Czech Republic.
| | - Lucyna Mrówczyńska
- Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Jacek Lukasz Kolanowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Insińska-Rak M, Golczak A, Gierszewski M, Anwar Z, Cherkas V, Kwiatek D, Sikorska E, Khmelinskii I, Burdziński G, Cibulka R, Mrówczyńska L, Kolanowski JL, Sikorski M. 5-Deazaalloxazine as photosensitizer of singlet oxygen and potential redox-sensitive agent. Photochem Photobiol Sci 2023:10.1007/s43630-023-00401-9. [PMID: 36934363 DOI: 10.1007/s43630-023-00401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/28/2023] [Indexed: 03/20/2023]
Abstract
Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 μs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (ФΔ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.
Collapse
Affiliation(s)
- Małgorzata Insińska-Rak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Golczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Mateusz Gierszewski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Zubair Anwar
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Volodymyr Cherkas
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704, Poznań, Poland
| | - Dorota Kwiatek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704, Poznań, Poland
| | - Ewa Sikorska
- Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poznań, Poland
| | - Igor Khmelinskii
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, and Centre for Electronics, Optoelectronics and Telecommunications, University of the Algarve, 8005-139, Faro, Portugal
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technicka 5, Prague 6, 16628, Prague, Czech Republic.
| | - Lucyna Mrówczyńska
- Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Jacek Lukasz Kolanowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704, Poznań, Poland.
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
3
|
Ghosh S, Puranik M. Initial Excited State Dynamics of Lumichrome upon Ultraviolet Excitation. Photochem Photobiol 2022; 98:1270-1283. [PMID: 35380739 DOI: 10.1111/php.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Lumichrome (LC) is the major photodegradation product of biologically important flavin cofactors. Since LC serves as a structural comparison to the flavins; understanding excited states of LC is fundamentally important to establish a connection with photophysics of different flavins, such as lumiflavin (LF), riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Herein, we deduce the initial excited state structural dynamics of LC using UV resonance Raman (UVRR) intensity analysis. The UVRR spectra at wavelengths across the 260 nm absorption band of LC were measured and resulting Raman excitation profiles and absorption spectrum were self consistently simulated using a time-dependent wave packet formalism to extract the initial excited state structural and solvent broadening parameters. These results are compared with those obtained for other flavins following UV excitations. We find that LC undergoes a very distinct instantaneous charge redistribution than flavins, which is attributed to the extended π-conjugation present in flavins but missing in LC. The homogeneous broadening linewidth of LC appears to be lower than that of LF, while the inhomogeneous broadening values are comparable, indicating greater solvent interaction with excited flavin on ultrafast timescale compared to LC, whereas on longer timescale these interactions are almost similar.
Collapse
Affiliation(s)
- Sudeb Ghosh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| |
Collapse
|
4
|
Jana R, Gautam RK, Bapli A, Seth D. Photodynamics of biological active flavin in the presence of zwitterionic surfactants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120304. [PMID: 34464918 DOI: 10.1016/j.saa.2021.120304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In the flavin family of photoactive biomolecules, lumichrome (LM) is a very important compound. It contains a tri-cyclic structure with methyl groups at two sides. It formed by the partial decomposition and biodegradation of riboflavin in both acidic as well as in neutral medium. Herein, we have studied the photophysical properties of LM in the presence of two zwitterionic surfactants, namely dodecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (DSB), and tetradecyldimethyl(3-sulfopropyl) ammonium hydroxide inner salt (TSB), having the same head group but a different tail part. We have used steady-state absorption, fluorescence emission, and time-resolved fluorescence emission measurements. We observed that in the presence of zwitterionic surfactant aggregates LM shows excitation and emission wavelength dependent emission properties, which demonstrate the structural changes that take place from one form to another prototropic form of LM molecule. The higher rotational relaxation time of LM in the case of DSB compared to TSB demonstrated that LM is facing more rigid environment in DSB micelles compared to TSB micelles.
Collapse
Affiliation(s)
- Rabindranath Jana
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Rajesh Kumar Gautam
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Aloke Bapli
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
5
|
Mal M, Mandal D. Double proton transfer in a polar nano-droplet: Phototautomerization of alloxazine in AOT/alkane reverse micelles containing water or glycerol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119708. [PMID: 33784597 DOI: 10.1016/j.saa.2021.119708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alloxazine phototautomerization is believed to occur through an excited state double proton transfer (ESDPT) mechanism involving cyclic intermolecular H-bonded complexes between Alloxazine and hydroxylic solvents like water and alcohols. In AOT/alkane dispersions in the absence of any polar liquid, Alloxazine molecules reside inside the polar core of the AOT reverse micelle nanoparticles, where they involve in H-bonding with the anionic sulfonate head-groups of the AOT molecules, but are unable to generate the appropriate cyclic intermolecular H-bonded complexes conducive to ESDPT. However, tautomerization is switched on with addition of water and formation ofwater nano-droplet at the core of reverse micelle. Evidently, the Alloxazine⋅⋅⋅⋅AOT H-bonds are now replaced by Alloxazine⋅⋅⋅⋅Water H-bonds, promotingESDPT. On the other hand, Alloxazine phototautomerization is hindered in Glycerol, irrespective of whether the latter is in the bulk liquid state or in the form of a polar nano-droplet. This may be explained by steric considerations.
Collapse
Affiliation(s)
- Madhushree Mal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Debabrata Mandal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
6
|
Guo H, Ma X, Lei Z, Qiu Y, Zhao J, Dick B. Photophysical properties of N-methyl and N-acetyl substituted alloxazines: a theoretical investigation. Phys Chem Chem Phys 2021; 23:13734-13744. [PMID: 34128506 DOI: 10.1039/d1cp01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure and photophysical properties of a series of N-methyl and N-acetyl substituted alloxazines (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT) based calculations. We showed that non-radiative decays from the lowest singlet and triplet excited states of these AZs are dominant over their radiative counterparts. The fast non-radiative decays of the excited AZs can be attributed to the energy consumption (Ereorg) through structural reorganization facilitated by the intrinsic normal modes of the alloxazine framework, as well as their coupling with those of the functional groups. Substitution with functional groups may lead to further perturbation of the electronic structure of the AZ chromophore, which may enhance intersystem crossing with the ππ* states of the AZs. Due to the different bonding of N1 and N3 within the alloxazine framework, substitution may result in AZs with different photophysical properties. Specifically, functionalization at N1 may help in maintaining or even reducing Ereorg and would promote the absorption and radiative decay from the excited AZs. However, the strong coupling of the vibrational modes of acetyl at N3 with the intrinsic normal modes of the alloxazine framework would contribute significantly to Ereorg, and benefit the non-radiative decay of the excited AZs. We expect that the findings would pave the way for rational design of novel AZs with extraordinary photophysical properties.
Collapse
Affiliation(s)
- Huimin Guo
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Xiaolin Ma
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Zhiwen Lei
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Yang Qiu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| |
Collapse
|
7
|
|
8
|
|
9
|
Guo H, Xia H, Ma X, Chen K, Dang C, Zhao J, Dick B. Efficient Photooxidation of Sulfides with Amidated Alloxazines as Heavy-atom-free Photosensitizers. ACS OMEGA 2020; 5:10586-10595. [PMID: 32426617 PMCID: PMC7227068 DOI: 10.1021/acsomega.0c01087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Photooxidation utilizing visible light, especially with naturally abundant O2 as the oxygen source, has been well-accepted as a sustainable and efficient procedure in organic synthesis. To ensure the intersystem crossing and triplet quantum yield for efficient photosensitization, we prepared amidated alloxazines (AAs) and investigated their photophysical properties and performance as heavy-atom-free triplet photosensitizers and compared with those of flavin (FL) and riboflavin tetraacetate (RFTA). Because of the difference in the framework structure of AAs and FL and the introduction of carbonyl moiety, the absorption of FL at ∼450 nm is blue-shifted to ∼380 nm and weakened (ε = 8.7 × 103 for FL to ∼6.8 × 103 M-1 cm-1), but the absorption at ∼340 nm is red-shifted to ∼350 nm and enhanced by ∼50% (from ε = 6.4 × 103 for FL to ∼9.9 × 103 M-1 cm-1) in AAs. The intersystem crossing rates from the S1 to T1 are also enhanced in these AAs derivatives, while the fluorescence quantum yield decreases from ∼30 to ∼7% for FL and AAs, respectively, making the triplet excited state lifetime and the singlet oxygen quantum yield of AAs at least comparable to those of FL and RFTA. We examined the performance of these heave-atom-free chromophores in the photooxidation of sulfides to afford sulfoxides. In accordance with the prolonged triplet excited state lifetime and enhanced triplet quantum yield, 2-5-fold performance enhancements were observed for AAs in the photooxidation of sulfides with respect to FL. We proposed that the key reactive oxygen species of AA-sensitized photooxidation are singlet oxygen and superoxide radical anion based on mechanistic investigations. The research highlights the superior performance of AAs in photocatalysis and would be helpful to rationalize the design of efficient heavy-atom-free organic photocatalysts.
Collapse
Affiliation(s)
- Huimin Guo
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Hongyu Xia
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Xiaolin Ma
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Kepeng Chen
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Can Dang
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, P. R. China
| | - Bernhard Dick
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
10
|
Yang D, Yang G, Zhao J, Song N, Zheng R, Wang Y. Solvent controlling excited state proton transfer reaction in quinoline/isoquinoline-pyrazole isomer QP-I: A theoretical study. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dapeng Yang
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou China
- Department of Basic Science; Jiaozuo University; Jiaozuo China
| | - Guang Yang
- Department of Basic Science; Jiaozuo University; Jiaozuo China
| | - Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Nahong Song
- College of Computer and Information Engineering; Henan University of Economics and Law; Zhengzhou China
| | - Rui Zheng
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou China
| | - Yusheng Wang
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou China
| |
Collapse
|
11
|
Yang D, Yang G, Zhao J, Zheng R, Wang Y, Lv J. A theoretical assignment on excited-state intramolecular proton transfer mechanism for quercetin. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dapeng Yang
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Guang Yang
- Department of Basic Science; Jiaozuo University; Jiaozuo 454000 China
| | - Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Rui Zheng
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| | - Yusheng Wang
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| | - Jian Lv
- College of Mathematics and Information Science; North China University of Water Resources and Electric Power; Zhengzhou 450045 China
| |
Collapse
|
12
|
Chang XP, Xie XY, Lin SY, Cui G. QM/MM Study on Mechanistic Photophysics of Alloxazine Chromophore in Aqueous Solution. J Phys Chem A 2016; 120:6129-36. [DOI: 10.1021/acs.jpca.6b02669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue-Ping Chang
- Key Laboratory
of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Ying Xie
- Key Laboratory
of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shi-Yun Lin
- Key Laboratory
of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory
of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Penzkofer A. Absorption and emission spectroscopic investigation of alloxazine in aqueous solutions and comparison with lumichrome. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Prukała D, Gierszewski M, Kubicki M, Pędziński T, Sikorska E, Sikorski M. Spectroscopy and photophysics of trimethyl-substituted derivatives of 5-deazaalloxazine. Experimental and theoretical approaches. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Prukala D, Khmelinskii I, Koput J, Gierszewski M, Pędziński T, Sikorski M. Photophysics, excited-state double-proton transfer and hydrogen-bonding properties of 5-deazaalloxazines. Photochem Photobiol 2014; 90:972-88. [PMID: 24816028 DOI: 10.1111/php.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Abstract
The photophysical properties of 5-deazaalloxazine and 1,3-dimethyl-5-deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0 -Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM-CCSD] with the correlation-consistent basis sets. Also the time-dependent density functional theory (TD-DFT) has been employed. The lowest singlet excited states of 5-deazaalloxazine and 1,3-dimethyl-5-deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close-lying π, π* and n, π* transitions. Experimental steady-state and time-resolved spectral studies indicate formation of an isoalloxazinic excited state via excited-state double-proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5-deazaalloxazine molecule. Solvatochromism of both 5-deazaalloxazine and its 1,3-dimethyl substituted derivative was analyzed using the Kamlet-Taft scale and four-parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute-solvent hydrogen-bonding interactions in their excited state.
Collapse
Affiliation(s)
- Dorota Prukala
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Prukała D, Gierszewski M, Pędziński T, Sikorski M. Influence of pH on spectral and photophysical properties of 9-methyl-5-deazaalloxazine and 10-ethyl-5-deaza-isoalloxazine. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Elsherbiny AS, Egelhaaf HJ, Oelkrug D. Accessibility and shielding of silanol surface centers on porous silica beads; UV/vis absorption and fluorescence studies. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Sayin S, Uysal Akkuş G, Cibulka R, Stibor I, Yilmaz M. Synthesis of Flavin-Calix[4]arene Conjugate Derivatives. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201000260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Marchena M, Gil M, Martín C, Organero JA, Sanchez F, Douhal A. Stability and Photodynamics of Lumichrome Structures in Water at Different pHs and in Chemical and Biological Caging Media. J Phys Chem B 2011; 115:2424-35. [DOI: 10.1021/jp110134f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Marchena
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
- Facultad de Quimica, Departamento de Quimica Fisica, Universidad de Sevilla, Calle Profesor Garcia Gonzalez, S.N. 41012 Sevilla, Spain
| | - Michał Gil
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Cristina Martín
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Juan Angel Organero
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| | - Francisco Sanchez
- Facultad de Quimica, Departamento de Quimica Fisica, Universidad de Sevilla, Calle Profesor Garcia Gonzalez, S.N. 41012 Sevilla, Spain
| | - Abderrazzak Douhal
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Departamento de Quimica Fisica, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N. 45071 Toledo, Spain
| |
Collapse
|
20
|
Electronic structure and spectral properties of selected trimethyl-alloxazines: Combined experimental and DFT study. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Salzmann S, Marian CM. The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution. Photochem Photobiol Sci 2009; 8:1655-66. [DOI: 10.1039/b9pp00022d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Vieira Ferreira LF, Costa AI, Ferreira Machado I, Botelho do Rego AM, Sikorska E, Sikorski M. Surface photochemistry: alloxazine within nanochannels of Na+ and H+ ZSM-5 zeolites. Phys Chem Chem Phys 2009; 11:5762-72. [DOI: 10.1039/b903013a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|