1
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
2
|
Elias E, Sarathchandran C, Joseph S, Zachariah AK, Thomas J, Devadasan D, G. Souza F, Thomas S. Photoassisted degradation of rhodamine B using poly(
ε
‐caprolactone) based nanocomposites: Mechanistic and kinetic features. J Appl Polym Sci 2021. [DOI: 10.1002/app.50612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eldho Elias
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - C. Sarathchandran
- Department of Science, Amrita School of Engineering Amrita Vishwa Vidyapeetham Chennai India
| | - Saju Joseph
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| | - Ajesh K. Zachariah
- Post Graduate and Research Department of Chemistry Mar Thoma College Tiruvalla Kerala India
| | - Jince Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| | - Dineep Devadasan
- School of Environmental Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Fernando G. Souza
- Programa de Engenharia Civil, COPPE Universidade Federal de Rio de Janeiro, Centro de Tecnologia – Cidade Universitaria, av. Horacio Macedo Rio de Janeiro Brazil
| | - Sabu Thomas
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
3
|
Omer N, Zhang F, Zhao G, Guang S, Xu H. Highly selective chemosensor for repetitive detection of Fe3+in pure water and bioimaging. Analyst 2019; 144:3414-3421. [DOI: 10.1039/c9an00070d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) with amine-containing polyacrylamide (OV-POSS co-poly(acrylamide)) gives a new fluorescent polymeric chemo-sensor with complete water solubility.
Collapse
Affiliation(s)
- Nahla Omer
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
- China
| | - Fayin Zhang
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
- China
| | - Gang Zhao
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
- China
| | - Shanyi Guang
- School of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Hongyao Xu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
- China
- Research Center for Analysis and Measurement
| |
Collapse
|
4
|
Sathiya Savithri J, Rajakumar P. Synthesis, photophysical, antibacterial and molecular docking studies on aromatic ring core-containing rhodamine B decorated triazole bridged dendrimers. NEW J CHEM 2018. [DOI: 10.1039/c8nj02943a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodamine B decorated dendrimers 1–6 were synthesized by a convergent approach using click chemistry. The zeroth generation dendrimer 1 (G0) and the first generation dendrimer 4 (G1) showed better antibacterial activity than the other dendrimers.
Collapse
Affiliation(s)
| | - Perumal Rajakumar
- Department of Organic Chemistry
- University of Madras
- Chennai – 600 025
- India
| |
Collapse
|
5
|
Wang L, Xu K, Hou X, Han Y, Liu S, Wiraja C, Yang C, Yang J, Wang M, Dong X, Huang W, Xu C. Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9528-9538. [PMID: 28247768 DOI: 10.1021/acsami.7b01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stable presence of fluorophores within the biocompatible and biodegradable elastomer poly(glycerol-co-sebacate) acrylate (PGSA) is critical for monitoring the transplantation, performance, and degradation of the polymers in vivo. However, current methods such as physically entrapping the fluorophores in the polymer matrix or providing a fluorescent coating suffer from rapid leakage of fluorophores. Covalent conjugation of fluorophores with the polymers and the subsequent core-cross-linking are proposed here to address this challenge. Taking rhodamine as the model dye and PGSA nanoparticles (NPs) as the model platform, we successfully showed that the synthesized rhodamine-conjugated PGSA (PGSAR) NPs only released less than 30% rhodamine at day 28, whereas complete release of dye occurred for rhodamine-encapsulated PGSA (PGSA-p-R) NPs at day 7 and 57.49% rhodamine was released out for the un-cross-linked PGSAR NPs at day 28. More excitingly, PGSAR NPs showed a strong quantum yield enhancement (26.24-fold) of the fluorophores, which was due to the hydrophobic environment within PGSAR NPs and the restricted rotation of (6-diethylamino-3H-xanthen-3-ylidene) diethyl group in rhodamine after the conjugation and core-cross-linking. The stable presence of dye in the NPs and enhanced fluorescence allowed a longitudinal tracking of stem cells both in vitro and in vivo for at least 28 days.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Keming Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xiaochun Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
- Key Laboratory for Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications , Nanjing 210046, P. R. China
| | - Yiyuan Han
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Shiying Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jun Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Singapore 637457, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Uchiyama S, Gota C, Tsuji T, Inada N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem Commun (Camb) 2017; 53:10976-10992. [DOI: 10.1039/c7cc06203f] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular temperature can be measured using fluorescent polymeric thermometersviatheir temperature-dependent fluorescence signals.
Collapse
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Chie Gota
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Toshikazu Tsuji
- Central Laboratories for Key Technologies
- KIRIN Company Limited
- 236-0004 Kanagawa
- Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|
7
|
Geng TM, Guo C, Dong YJ, Chen M, Wang Y. Turn-on fluorogenic and chromogenic detection of cations in complete water media with poly(N
-vinyl pyrrolidone) bearing rhodamine B derivatives as polymeric chemosensor. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tong-Mou Geng
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 China
- Collaborative Innovation Center for Petrochemical New Materials; Anqing Anhui 246011 China
| | - Chang Guo
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 China
- Collaborative Innovation Center for Petrochemical New Materials; Anqing Anhui 246011 China
| | - Yan-Jie Dong
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 China
- Collaborative Innovation Center for Petrochemical New Materials; Anqing Anhui 246011 China
| | - Meng Chen
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 China
- Collaborative Innovation Center for Petrochemical New Materials; Anqing Anhui 246011 China
| | - Yu Wang
- School of Resource and Environmental Science; Anqing Normal University; Anqing 246011 China
| |
Collapse
|
8
|
Geng TM, Wu DY. Water-soluble polymeric chemosensor for selective detection of Hg2+in aqueous solution using rhodamine-based modified poly(acrylamide-acrylic acid). LUMINESCENCE 2015; 30:1263-8. [DOI: 10.1002/bio.2890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Tong-Mou Geng
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 People's Republic of China
- Collaborative Innovation Center for Petrochemical New Materials; Anqing Anhui 246011 People's Republic of China
| | - Da-Yu Wu
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering; Anqing Normal University; Anqing 246011 People's Republic of China
- Institute of Petrochemical Technology; Changzhou University; Changzhou 213164 People's Republic of China
| |
Collapse
|
9
|
Rai A, Kumari N, Nair R, Singh K, Mishra L. A new rhodamine derivative as a single optical probe for the recognition of Cu2+ and Zn2+ ions. RSC Adv 2015. [DOI: 10.1039/c4ra13332c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rhodamine-based chemosensor exhibits pink color on addition of Cu2+ ions and is returned to colorless by addition of aqueous solution of Na2EDTA. It fluoresces in the presence of Zn2+ ions, displaying a color change from colorless to orange in the presence of UV light.
Collapse
Affiliation(s)
- Abhishek Rai
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi
- India
| | - Niraj Kumari
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi
- India
| | - Rohini Nair
- Department of Molecular and Human Genetics
- BHU
- Varanasi-221005
- India
| | - Kiran Singh
- Department of Molecular and Human Genetics
- BHU
- Varanasi-221005
- India
| | - Lallan Mishra
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi
- India
| |
Collapse
|
10
|
Geng T, Huang R, Wu D. Turn-on fluorogenic and chromogenic detection of Fe3+and Cr3+in a completely water medium with polyacrylamide covalently bonding to rhodamine B using diethylenetriamine as a linker. RSC Adv 2014. [DOI: 10.1039/c4ra08640f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Fluorogenic detection of Hg2+, Cd2+, Fe2+, Pb2+ cations in aqueous media by means of an acrylamide-acrylic acid copolymer chemosensor with pendant rhodamine-based dyes. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-013-0354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Capece S, Chiessi E, Cavalli R, Giustetto P, Grishenkov D, Paradossi G. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chem Commun (Camb) 2013; 49:5763-5. [DOI: 10.1039/c3cc42037j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Uchiyama S, Kimura K, Gota C, Okabe K, Kawamoto K, Inada N, Yoshihara T, Tobita S. Environment-Sensitive Fluorophores with Benzothiadiazole and Benzoselenadiazole Structures as Candidate Components of a Fluorescent Polymeric Thermometer. Chemistry 2012; 18:9552-63. [DOI: 10.1002/chem.201200597] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Indexed: 12/17/2022]
|
14
|
Yin L, He C, Huang C, Zhu W, Wang X, Xu Y, Qian X. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells. Chem Commun (Camb) 2012; 48:4486-8. [DOI: 10.1039/c2cc30404j] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wakizono S, Yamamoto K, Kadokawa JI. Tunable multicolour emissions of polymeric ionic films carrying proper fluorescent dye moieties. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30496a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Wakizono S, Yamamoto K, Kadokawa JI. FRET function of polymeric ionic liquid film containing rhodamine moieties for exhibiting emissions by excitation at wide wavelength areas. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Pietsch C, Schubert US, Hoogenboom R. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chem Commun (Camb) 2011; 47:8750-65. [PMID: 21625713 DOI: 10.1039/c1cc11940k] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This feature article provides, for the first time, an overview of the research that guided the way from fundamental studies of the thermo-responsive phase separation of aqueous polymer solutions to polymeric sensor systems. The incorporation of solvatochromic dyes into thermoresponsive polymers as well as the concepts of polymeric sensors are presented and discussed in detail.
Collapse
Affiliation(s)
- Christian Pietsch
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | | | | |
Collapse
|
18
|
Hu J, Dai L, Liu S. Analyte-Reactive Amphiphilic Thermoresponsive Diblock Copolymer Micelles-Based Multifunctional Ratiometric Fluorescent Chemosensors. Macromolecules 2011. [DOI: 10.1021/ma2001146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Hu J, Liu S. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments. Macromolecules 2010. [DOI: 10.1021/ma1005815] [Citation(s) in RCA: 510] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Chingin K, Balabin RM, Frankevich V, Chen H, Barylyuk K, Nieckarz R, Fedorov A, Zenobi R. Optical properties of protonated Rhodamine 19 isomers in solution and in the gas phase. Phys Chem Chem Phys 2010; 12:14121-7. [DOI: 10.1039/c0cp00482k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wang D, Miyamoto R, Shiraishi Y, Hirai T. BODIPY-conjugated thermoresponsive copolymer as a fluorescent thermometer based on polymer microviscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13176-13182. [PMID: 19821567 DOI: 10.1021/la901860x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A simple copolymer, poly(NIPAM-co-BODIPY), consisting of N-isopropylacrylamide (NIPAM) and boradiazaindacene (BODIPY) units, behaves as a fluorescent thermometer in water. The copolymer exhibits weak fluorescence at <23 degrees C, but the intensity increases with a rise in temperature up to 35 degrees C, enabling an accurate indication of the solution temperature at 23-35 degrees C. The heat-induced fluorescence enhancement is driven by an increase in the polymer microviscosity, associated with a phase transition of the polymer from the coil to globule state. The viscous domain formed inside the globule-state polymer suppresses the rotation of the meso-pyridinium group of the excited-state BODIPY units, resulting in heat-induced fluorescence enhancement. The polymer shows reversible fluorescence enhancement/quenching regardless of the heating/cooling process and displays high reusability with a simple recovery process.
Collapse
Affiliation(s)
- Dongping Wang
- Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | | | | | | |
Collapse
|
22
|
Wu J, Gao C. Click Chemistry Approach to Rhodamine B-Capped Polyrotaxanes and their Unique Fluorescence Properties. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Shiraishi Y, Adachi K, Tanaka S, Hirai T. Effects of poly-N-isopropylacrylamide on fluorescence properties of CdS/Cd(OH)2 nanoparticles in water. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2009.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Beija M, Afonso CAM, Martinho JMG. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem Soc Rev 2009; 38:2410-33. [DOI: 10.1039/b901612k] [Citation(s) in RCA: 1095] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|