2
|
Nunthaboot N, Taniguchi S, Chosrowjan H, Tanaka F. Equivalence between inverted regions of the energy gap law and inverted regions of donor–acceptor distances in photoinduced electron transfer processes in flavoproteins. RSC Adv 2021; 11:8821-8832. [PMID: 35423406 PMCID: PMC8695315 DOI: 10.1039/d0ra09716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
In the present work, we discuss about the relationship between the energy gap law and extended Dutton law in flavoproteins. The extend Dutton law is defined herein as the dependence of logarithmic rates (ln Rate) of photoinduced electron transfer (ET) from aromatic amino acids to excited isoalloxazine (Iso*) on donor–acceptor distances (Rcs). Both functions of ln Rate vs. negative values of the standard free energy gap and ln Rate vs. Rc display a parabolic behavior, when the ET rates are ultrafast. The negative values of the standard free energy gap at peaks of ln Rate [Xm(ES)] were obtained for FMN-binding protein, wild-type pyranose 2-oxidase, T169S (Thr169 is replaced by Ser) pyranose 2-oxidase, and medium-chain acyl-CoA dehydrogenase. The values of Rc at peaks of ln Rate [Xm(Rc)] were also obtained for these flavoproteins. The negative values of the standard free energy gap decreased with approximate linear functions of Rc. The negative values of standard free energy gap [Xm(ESRc)] at Rc = Xm(Rc) were evaluated using the linear functions of the negative standard free energy gap with Rc. The values of Xm(ESRc) were mostly in very good agreement with the values of Xm(ES). This implies that the energy gap law and the extend Dutton law are equivalent. Xm(ES) values in ET donors displaying the linear extend Dutton law with Rc were obtained by energy gap law, and then Xm(Rc) values were evaluated with the negative standard free energy gap. Thus, the obtained Xm(Rc) values were much smaller than the Rc range obtained by the method of molecular dynamics simulation. This suggests that ET processes with linear profiles of the extend Dutton law could be parabolic when Rc becomes much shorter than the Rc range obtained by the method of molecular dynamics simulation. Relationship between EXDL and SEGL.![]()
Collapse
Affiliation(s)
- Nadtanet Nunthaboot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Mahasarakham University
- Thailand
| | - Seiji Taniguchi
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| | - Fumio Tanaka
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| |
Collapse
|
3
|
Taniguchi S, Chosrowjan H, Ito S, Miyasaka H, Katane M, Homma H, Tanaka F, Nueangaudom A, Lugsanangarm K, Kokpol S. Comparative studies on picosecond-resolved fluorescence of d-amino acid oxidases from human with one from porcine kidney. Photoinduced electron transfer from aromatic amino acids to the excited flavin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111546. [PMID: 31351309 DOI: 10.1016/j.jphotobiol.2019.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Fluorescence dynamics of human d-amino acid oxidase (hDAAO) and its five inhibitors have been studied in the picoseconds time domain, and compared with one in d-amino acid oxidase from porcine kidney (pkDAAO) reported. The fluorescence lifetimes were identified as 47 ps in the dimer, 235 ps in the monomer, which are compared with those of pkDAAO (45 ps-185 ps). The fluorescence lifetimes of the hDAAO did not change upon the inhibitor bindings despite of modifications in the absorption spectra. This indicates that the lifetimes of the complexes are too short to detect with the picosecond lifetime instrument. Numbers of the aromatic amino acids are similar between the both DAAOs. The fluorescence lifetimes of hDAAO were analysed with an ET theory using the crystal structure. The difference in the lifetimes of the dimer and monomer was well described in terms of difference in the electron affinity of the excited isoalloxazine (Iso*) between the two forms of the protein, though it is not known whether the structure of the monomer is different from the dimer. Three fastest ET donors were Tyr314, Trp52 and Tyr224 in the dimer, while Tyr314, Tyr224 and Tyr55 in the monomer, which are compared to those in pkDAAO, Tyr314, Tyr224 and Tyr228 in the dimer, and Tyr224, Tyr314 and Tyr228 in the monomer. The ET rate from Trp55 in hDAAO dimer was much faster compared to the rate in pkDAAO dimer. A rise component with negative pre-exponential factor was not observed in hDAAO, which are found in pkDAAO.
Collapse
Affiliation(s)
- Seiji Taniguchi
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan.
| | - Haik Chosrowjan
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan
| | - Shoji Ito
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Fumio Tanaka
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan; Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand.
| | - Arthit Nueangaudom
- Program of General Science, Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15,000, Thailand
| | - Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science, Bansomdejchaopraya Rajabhat University, Bangkok 10,600, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand
| |
Collapse
|
4
|
Lugsanangarm K, Nueangaudom A, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Dynamics of the protein structure of T169S pyranose 2-oxidase in solution: Molecular dynamics simulation. Proteins 2017; 85:1913-1924. [DOI: 10.1002/prot.25345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science and Technology; Bansomdejchaopraya Rajabhat University; Bangkok 10600 Thailand
| | - Arthit Nueangaudom
- Program of General Science, Faculty of Science and Technology; Thepsatri Rajabhat University; Lopburi 15000 Thailand
| | - Somsak Pianwanit
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Mahasarakham University; Mahasarakham 44150 Thailand
| | - Fumio Tanaka
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| | - Seiji Taniguchi
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry; Institute for Laser Technology; Osaka 550-0004 Japan
| |
Collapse
|
5
|
Nunthaboot N, Lugsanangarm K, Nueangaudom A, Pianwanit S, Kokpol S, Tanaka F, Taniguchi S, Chosrowjan H, Nakanishi T, Kitamura M. Photoinduced electron transfer from aromatic amino acids to the excited isoalloxazine in single mutated flavin mononucleotide binding proteins: Effect of the dimer formation on the rate and the electrostatic energy inside the proteins. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Conformational difference between two subunits in flavin mononucleotide binding protein dimers from Desulfovibrio vulgaris (MF): molecular dynamics simulation. Comput Biol Chem 2016; 64:113-125. [PMID: 27327240 DOI: 10.1016/j.compbiolchem.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
The structural and dynamical properties of five FMN binding protein (FBP) dimers, WT (wild type), E13K (Glu13 replaced by Lys), E13R (Glu13 replaced by Arg), E13T (Glu13 replaced by Thr) and E13Q (Glu13 replaced by Gln), were investigated using a method of molecular dynamics simulation (MDS). In crystal structures, subunit A (Sub A) and subunit B (Sub B) were almost completely equivalent in all of the five FBP dimers. However, the predicted MDS structures of the two subunits were not equivalent in solution, revealed by the distances and inter-planar angles between isoalloxazine (Iso) and aromatic amino acids (Trp32, Tyr35 and Trp106) as well as the hydrogen bonding pairs between Iso and nearby amino acids. Residue root of mean square fluctuations (RMSF) also displayed considerable differences between Sub A and Sub B and in the five FBP dimers. The dynamics of the whole protein structures were examined with the distance (RNN) between the peptide N atom of the N terminal (Met1) and the peptide N atom of the C terminal (Leu122). Water molecules were rarely accessible to Iso in all FBP dimers which are in contrast with other flavoenzymes.
Collapse
|
7
|
Lugsanangarm K, Nueangaudom A, Kokpol S, Pianwanit S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Heterogeneous subunit structures in the pyranose 2-oxidase homotetramer revealed by theoretical analysis of the rates of photoinduced electron transfer from a tryptophan to the excited flavin. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Tanaka F, Lugsanangarm K, Nunthaboot N, Nueangaudom A, Pianwanit S, Kokpol S, Taniguchi S, Chosrowjan H. Classification of the mechanisms of photoinduced electron transfer from aromatic amino acids to the excited flavins in flavoproteins. Phys Chem Chem Phys 2015; 17:16813-25. [DOI: 10.1039/c5cp01432h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emission wavelength-dependence of the relationship between logarithmic ET rate vs. donor–acceptor distance in pyranose 2-oxidase.
Collapse
Affiliation(s)
- Fumio Tanaka
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Kiattisak Lugsanangarm
- Program of Science
- Faculty of Education
- Bansomdejchaopraya Rajabhat University
- Bangkok 10600
- Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry
- Faculty of Science
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Arthit Nueangaudom
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Somsak Pianwanit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Sirirat Kokpol
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Seiji Taniguchi
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| |
Collapse
|
9
|
Lugsanangarm K, Kokpol S, Nueangaudom A, Pianwanit S, Nunthaboot N, Tanaka F. Structural heterogeneity among four subunits in pyranose 2-oxidase: A molecular dynamics simulation study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614400100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The homotetramer pyranose 2-oxidase (P2O) from Tetrametes multicolor contains flavin adenine dinucleotide (FAD) as a cofactor, and displays two conformers with different transient fluorescence spectra and lifetimes (ca. 0.1 ps and 360 ps). The ultrashort lifetimes of isoalloxazine (Iso) are ascribed to the photoinduced electron transfer (ET) from Trp168 to the excited Iso. Here, the structural heterogeneity among the four subunits in solution was studied by means of molecular dynamics simulation (MDS). The ET donor–acceptor distances in crystal and solution were compared. The distribution of the H-bond distances between Iso and the surrounding amino acids revealed appreciable differences among the four subunits. The structural fluctuations in two distant places were examined for the Iso-P and Iso-Q distances (where P and Q are Trp or Tyr) with the correlation coefficients between Iso-P and Iso-Q distances, revealing cooperative motions even though P and Q were more than 1 nm apart and located in different subunits. Moreover, distributions of the distances between Iso and its closest ionic amino acids markedly differed among the four subunits. Electrostatic (ES) energies between the Iso anion and the ionic amino acids in the entire protein were obtained using a static dielectric constant of 1. The ES energy in each subunit was strongly influenced by the other subunits, whilst the distributions of the ES energies greatly differed among the four subunits. This heterogeneous distribution of the ES energy between subunits may contribute to the large differences in the experimentally detected ET rates.
Collapse
Affiliation(s)
- Kiattisak Lugsanangarm
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arthit Nueangaudom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsak Pianwanit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Fumio Tanaka
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Laser BioScience, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan
| |
Collapse
|
10
|
Nunthaboot N, Lugsanangarm K, Pianwanit S, Kokpol S, Tanaka F, Taniguchi S, Chosrowjan H, Nakanishi T, Kitamura M. Bell-shaped dependence of the rate of ultrafast photoinduced electron transfer from aromatic amino acids to the excited flavin on the donor–acceptor distance in FMN binding proteins. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|