1
|
Halliday MR, Miller SL, Gale CD, Deckard JR, Gourley BL, Levinger NE. Mutual Relationships of Nanoconfined Hexoses: Impacts on Hydrodynamic Radius and Anomeric Ratios. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20918-20926. [PMID: 39306762 PMCID: PMC11468786 DOI: 10.1021/acs.langmuir.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Although all hexose sugars share the same chemical formula, C6H12O6, subtle differences in their stereochemical structures lead to their various biological roles. Due to their prominent role in metabolism, hexose sugars are commonly found in nanoconfined environments. The complexity of authentic nanoconfined biological environments makes it challenging to study how confinement affects their behavior. Here, we present a study using a common model system, AOT reverse micelles, to study hexose sugars in nanoconfinement. We examine how reverse micelles affect the hexoses, how the hexoses affect reverse micelle formation, and the differences between specific hexoses: glucose, mannose, and galactose. We find that addition of glucose, mannose or galactose to reverse micelles that already contain water leaves their size smaller or nearly unchanged. Introducing aqueous hexose solution yields reverse micelles smaller than those prepared with the same volume of water. We use 1H NMR to show how the nanoconfined environment impacts hexose sugars' anomeric ratios. Nanoconfined mannose and galactose display smaller changes in their anomeric ratios compared to glucose. These conclusions may provide insights about the biological roles of each hexose when studied under a more authentic nanoconfined system.
Collapse
Affiliation(s)
- Mia R. Halliday
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Samantha L. Miller
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D. Gale
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Jenna R. Deckard
- Department
of Chemistry and Biochemistry, DePauw University, Greencastle, Indiana 46135-0037, United States
| | - Bridget L. Gourley
- Department
of Chemistry and Biochemistry, DePauw University, Greencastle, Indiana 46135-0037, United States
| | - Nancy E. Levinger
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department
of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Balan GA, Precupas A, Matei I. Gelation Behaviour of Pluronic F127/Polysaccharide Systems Revealed via Thioflavin T Fluorescence. Gels 2023; 9:939. [PMID: 38131925 PMCID: PMC10742936 DOI: 10.3390/gels9120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fast, reliable methods for characterizing the micelle-to-gel transition in emerging Pluronic F127/polysaccharide materials are essential for tailoring their applications as in situ gelling delivery systems. This study describes a simple fluorimetric method based on the response to gelation of the molecular probe thioflavin T (ThT). The techniques employed are (second derivative) steady-state and synchronous fluorescence. The capabilities of ThT as gelation reporter are tested for three model systems: Pluronic F127 (P16.6%), Pluronic F127/alginate (P16.6%ALG2%) and Pluronic F127/hyaluronic acid (P16.6%HA0.5%). We demonstrate that the changes in the short and long wavelength emissions of ThT allow accurate determination of the critical gelation temperatures in the investigated systems. The spectroscopic data providing information at molecular level are complemented with differential scanning microcalorimetric results revealing additional macroscopic insight into the micellization process. The gelation study is preceded by a solvatochromic analysis of ThT.
Collapse
Affiliation(s)
| | | | - Iulia Matei
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Singh VR, Pandey SP, Singh PK. A Unique Supramolecular Assembly between Sulfated Cyclodextrin, Silver and Melamine: Towards a Fluorescence based Dual Wavelength Detection Approach for Melamine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Heisler IA, Meech SR. Altered relaxation dynamics of excited state reactions by confinement in reverse micelles probed by ultrafast fluorescence up-conversion. Chem Soc Rev 2021; 50:11486-11502. [PMID: 34661209 DOI: 10.1039/d1cs00516b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemical reactions in confined environments are important in areas as diverse as heterogenous catalysis, environmental chemistry and biochemistry, yet they are much less well understood than the equivalent reactions in either the gas phase or in free solution. The understanding of chemical reactions in solution was greatly enhanced by real time studies of model reactions, through ultrafast spectroscopy (especially when supported by molecular dynamics simulation). Here we review some of the efforts that have been made to adapt this approach to the investigation of reactions in confined media. Specifically, we review the application of ultrafast fluorescence spectroscopy to measure reaction dynamics in the nanoconfined water phase of reverse micelles, as a function of the droplet radius and the charge on the interface. Methods of measurement and modelling of the reactions are outlined. In all of the cases studied (which are focused on ultrafast intramolecular reactions) the effect of confinement was to suppress the reaction. Even in the largest micelles the result in the bulk aqueous phase was not usually recovered, suggesting an important role for specific interactions between reactant and environment, for example at the interface. There was no simple one-to-one correspondence with direct measures of the dynamics of the confined phase. Thus, understanding the effect of confinement on reaction rate appears to require not only knowledge of the dynamics of the reaction in solutions and the effect of confinement on the medium, but also of the interaction between reactant and confining medium.
Collapse
Affiliation(s)
- Ismael A Heisler
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
5
|
Awasthi AA, Pandey SP, Singh PK. Supramolecular Control on the Optical Properties of a Dye-Polyelectrolyte Assembly. Chemphyschem 2021; 22:975-984. [PMID: 33759328 DOI: 10.1002/cphc.202100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Control of fluorescent molecular assemblies is an exciting area of research with large potential for various important applications, such as, fluorescence sensing/probing, cell imaging and monitoring drug-delivery. In the present contribution, we have demonstrated control on the extent of aggregation of a dye-polyelectrolyte assembly using a macrocyclic host molecule, sulfobutylether-β-cyclodextrin (SBE-β-CD). Initially, a cationic molecular rotor based organic dye, Auramine-O (AuO), undergoes aggregation in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS), and displays a broad intense new emission band along with large variation in its absorption features and excited-state lifetime. A manipulation of the monomer-aggregate equilibrium of the dye-polyelectrolyte assembly has been achieved by introducing a cyclodextrin based supramolecular host, SBE-β-CD, which leads to relocation of AuO molecules from polyelectrolyte (PSS) to supramolecular host cavity, owing to the formation of a host-guest complex between AuO and SBE-β-CD. A reversible control on this manipulation of monomer-aggregate equilibrium is further achieved by introducing a competitive guest for the host cavity i. e., 1-Adamantanol. Thus, we have demonstrated an interesting control on the dye-polyelectrolyte aggregate assembly using a supramolecular host molecule which open up exciting possibilities to construct responsive materials using a repertoire of various host-specific guest molecules.
Collapse
Affiliation(s)
- Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
6
|
Desai AM, Pandey SP, Singh PK. Effect of counter-anions on the aggregation of Thioflavin-T. Phys Chem Chem Phys 2021; 23:9948-9961. [PMID: 33861224 DOI: 10.1039/d1cp00193k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aggregation of small molecules in aqueous solution is known to be influenced by the ionic strength of the medium; however, the role played by the identity of salt in the phenomenon of small molecule aggregation is rarely investigated. In the present contribution, we have investigated the effect of counter-anions on the aggregation of a popular cationic amyloid sensing probe, Thioflavin-T (ThT), by taking six different anions, viz. chloride, bromide, acetate, iodide, tetrafluoroborate, and perchlorate. Our results clearly indicate that it is not the ionic strength of the medium which solely controls aggregation of small molecules but distinct ions behave distinctly with regard to the organization. In fact, distinct ion effects play a major role in the salt induced organization of fluorophores. Using detailed steady-state emission, time-resolved emission, and ground-state absorption measurements, the optical properties of salt induced aggregates of ThT have been characterized. We have rationalized our observations on the basis of the theory of matching water affinity, which suggests that the matching free hydration energy is a critical aspect for the formation of contact ion pairs, which eventually results in aggregation. In brief, a larger sized anion, perchlorate, has a lower free energy of hydration and forms a suitable contact ion pair, with a larger organic cation, ThT, having weaker hydration. This contact ion-pair formation subsequently leads to the formation of an aggregate assembly which is found to be emissive in nature. Therefore, it is possible to induce aggregation of ThT by selecting the right counterion with the appropriate size, which may help us to evaluate the false positive signals when high ionic strength and specific counterions are present in the sensing matrix.
Collapse
Affiliation(s)
- Akshat M Desai
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
7
|
Warerkar OD, Mudliar NH, Singh PK. A hemicyanine based fluorescence turn-on sensor for amyloid fibril detection in the far-red region. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mudliar NH, Dongre PM, Singh PK. A Heparin based dual ratiometric sensor for Thrombin. Int J Biol Macromol 2020; 167:1371-1378. [PMID: 33202269 DOI: 10.1016/j.ijbiomac.2020.11.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Thrombin is an important enzyme that plays a pivotal role in the blood clotting pathways. An imbalance in the activity of this enzyme is clinically known to be associated with various diseases, such as thrombosis, inflammation, atherosclerosis, and haemophilia, suggesting the need to devise sensors for Thrombin detection. However, the majority of the fluorescence-based Thrombin assays rely on fluorescence labelling assays or Thrombin specific recognition biomolecules, such as, aptamers or antibody which requires sophisticated techniques and makes it very expensive. Herein, we report a simple, selective, sensitive and label-free fluorescence detection scheme for Thrombin which is based on the interaction between Thrombin and a fluorescent complex of Heparin with a molecular rotor dye, Thioflavin-T. The detection scheme exploits selective interaction between cationic Thrombin and anionic Heparin to modulate the monomer-aggregate equilibrium of the Thioflavin-T-Heparin system. Importantly, the present system offers a ratiometric response that has the ability for robust quantification of Thrombin concentration even in complex medium. The involvement of all commercially available components is a crucial advantage of this detection scheme. Further, the detection scheme also shows reasonable response in diluted serum matrix.
Collapse
Affiliation(s)
- Niyati H Mudliar
- Department of Biophysics, University of Mumbai, Vidyanagari, Kalina, Mumbai 400098, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Vidyanagari, Kalina, Mumbai 400098, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Pandey SP, Jha P, Singh PK. Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
An anionic polyelectrolyte induced aggregate assembly of Thioflavin-T: A prospective platform for Protamine sensing. Int J Biol Macromol 2020; 164:1174-1182. [PMID: 32710965 DOI: 10.1016/j.ijbiomac.2020.07.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
Protamine, a polycation, is biologically and medically relevant protein. Protamine exhibits a wide array of functions in biological processes like gene transfer, tissue and organogenesis, cell reproduction, etc. Medically, Protamine is the only clinically approved antidote for Heparin and is routinely used in various surgical interventions, and hence controlling Protamine dosing in patients is very crucial. Taking into account the medical significance of Protamine, designing simple, reliable and sensitive fluorescence sensors is highly desirable. In this work, we propose one such sensitive and reliable fluorescent sensor which is based on a template of dye-polyelectrolyte assembly constituting a molecular rotor dye, Thioflavin-T and an anionic synthetic polyelectrolyte, polystyrene sulfonate. The addition of Protamine, prompts drastic modulations in spectral features of dye-polyelectrolyte assembly which enables sensitive detection of Protamine in aqueous solution. Apart from sensitive detection, our sensing platform aids in highly selective sensing of Protamine compared to other proteins. Moreover, our sensor system is constructed on label-free, inexpensive, commercially available molecules posing as an advantage over other sensor systems which involve laborious synthesis protocols. Most importantly, our sensor template is able to sense Protamine in diluted serum sample, indicating the potential practical utility of our sensor system.
Collapse
|
11
|
Singh VR, Singh PK. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 2020; 8:1182-1190. [PMID: 31957759 DOI: 10.1039/c9tb02403d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the biological relevance of adenosine triphosphate (ATP) as an "energy currency" in all organisms and significance of its detection in various diseased conditions, enormous efforts have been made to develop selective and sensitive fluorescent sensors for the detection of ATP. However, these developed sensor probes frequently involve technically challenging and time-consuming synthetic protocols for the production of sensor molecules and often suffer from poor solubility in aqueous medium. Another major disadvantage of these developed sensor systems is their single wavelength based operation which makes their performance susceptible to minute changes in experimental conditions. Herein, we report a fluorescence turn-on ratiometric sensor for the detection of ATP which operates by the dissociation of Thioflavin-T-sulphated-β-cyclodextrin supramolecular assembly by Zn2+ followed by ATP induced reassociation of the same. This modulation of the monomer/aggregate equilibrium of the supramolecular assembly followed by subsequent interactions with Zn2+ and ATP acts as an optimal scheme for the ratiometric detection of ATP. Overall this supramolecular ensemble based sensing platform provides a simple, sensitive, selective and label free detection approach for ATP in aqueous solution. Importantly, our sensor platform responds to ATP in the biologically complex media of serum samples suggesting its potential for possible applications in real-life scenarios.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| |
Collapse
|
12
|
Pettiwala AM, Singh PK. A molecular rotor based ratiometric sensor for basic amino acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:120-126. [PMID: 28704806 DOI: 10.1016/j.saa.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
Collapse
Affiliation(s)
- Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
13
|
Hanna SL, Huang JL, Swinton AJ, Caputo GA, Vaden TD. Synergistic effects of polymyxin and ionic liquids on lipid vesicle membrane stability and aggregation. Biophys Chem 2017; 227:1-7. [PMID: 28526567 DOI: 10.1016/j.bpc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) have been investigated for potential antibacterial and antibiotic applications due to their ability to destabilize and permeabilize the lipid bilayers in cell membranes. Bacterial assays have shown that combining ILs with antibiotics can provide a synergistic enhancement of their antibacterial activities. We have characterized the mechanism by which the conventional ILs 1-butyl-3-methylimidazolium chloride (BMICl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) enhance the lipid membrane permeabilization of the well-known antibiotic polymyxin B (PMB). We studied the sizes and membrane permeabilities of multilamellar and unilamellar lipid bilayer vesicles in the presence of ILs alone in aqueous solution, PMB alone, and ILs combined together with PMB. Light scattering-based experiments show that vesicle sizes dramatically increase when ILs are combined with PMB, which suggests that the materials combine to synergistically enhance lipid membrane disruption leading to vesicle aggregation. Lipid bilayer leakage experiments using tris (2,2'-bipyridyl) ruthenium (II) (Ru(bpy)32+) trapped in lipid vesicles, in which the trapped Ru(bpy)32+ fluorescence lifetime increases when it leaks out of the vesicle, show that combining BMIBF4 and PMB together permeabilize the membrane significantly more than with PMB or the IL alone. This demonstrates that ILs can assist in antibiotic permeabilization of lipid bilayers which could explain the increased antibiotic activities in the presence of ILs in solution.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Jenny L Huang
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Alana J Swinton
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States; Department of Biomedical and Translational Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States.
| |
Collapse
|
14
|
Mudliar NH, Sadhu B, Pettiwala AM, Singh PK. Evaluation of an Ultrafast Molecular Rotor, Auramine O, as a Fluorescent Amyloid Marker. J Phys Chem B 2016; 120:10496-10507. [DOI: 10.1021/acs.jpcb.6b07807] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niyati H. Mudliar
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Biswajit Sadhu
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Aafrin M. Pettiwala
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
15
|
Mukherjee P, Rafiq S, Sen P. Dual relaxation channel in thioflavin-T: An ultrafast spectroscopic study. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Singh PK, Mora AK, Nath S. Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Singh PK, Mora AK, Nath S. Ultrafast Torsional Relaxation of Thioflavin-T in Tris(pentafluoroethyl)trifluorophosphate (FAP) Anion-Based Ionic Liquids. J Phys Chem B 2015; 119:14252-60. [DOI: 10.1021/acs.jpcb.5b09028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
18
|
Singh PK, Murudkar S, Mora AK, Nath S. Ultrafast torsional dynamics of Thioflavin-T in an anionic cyclodextrin cavity. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Murudkar S, Mora AK, Singh PK, Bandyopadhyay T, Nath S. An ultrafast molecular rotor based ternary complex in a nanocavity: a potential “turn on” fluorescence sensor for the hydrocarbon chain. Phys Chem Chem Phys 2015; 17:5691-703. [DOI: 10.1039/c4cp04636f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Formation of a ternary complex by an ultrafast molecular rotor (UMR) with a macrocyclic cavitand has been investigated for the sensitive detection of the alkyl chain of a surfactant.
Collapse
Affiliation(s)
- Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
20
|
Murudkar S, Mora AK, Jakka S, Singh PK, Nath S. Ultrafast molecular rotor based DNA sensor: An insight into the mode of interaction. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Ganguly A, Paul BK, Ghosh S, Guchhait N. Probing the location of methanol in methanol/AOT/n-heptane system: true microemulsion or bi-continuous medium? RSC Adv 2014. [DOI: 10.1039/c4ra04713c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
22
|
Singh PK, Mora AK, Murudkar S, Nath S. Dynamics under confinement: torsional dynamics of Auramine O in a nanocavity. RSC Adv 2014. [DOI: 10.1039/c4ra03324h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Confinement inside the novel anionic sulphobutylether β-cyclodextrin nanocavity significantly slows down the torsional relaxation in Auramine O as compared to native β-CD.
Collapse
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| |
Collapse
|