1
|
Zhang J, Zhou X, Wang J, Fang D. A red-emitting Europium(III) complex as a luminescent probe with large Stokes shift for the sequential determination of Cu 2+ and biothiols in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121663. [PMID: 35917616 DOI: 10.1016/j.saa.2022.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel Eu3+-DTPA-bis(AMC) complex with red luminescence was designed and synthesized for sequential detection of Cu2+ and biothiols (Cys/Hcy/GSH) based on the displacement strategy with the good selectivity, high sensitivity, and large Stokes shift (288 nm). The possible detection mechanism was verified by UV-vis, the high-resolution mass spectrometry, and the fluorescence decay curve. The experimental parameters, including the solution pH, the incubation time, the concentration ratio of Eu3+-DTPA-bis(AMC) to Cu2+ and biothiols concentration, were optimized. Under the optimal conditions, it shows a good linear relationship between the concentration (0-10 μM) of Cu2+ and the fluorescence intensity of Eu3+-DTPA-bis(AMC), with a low detection limit of 0.065 μM. The linear range and the limit of detection of the Eu3+-DTPA-bis(AMC)/Cu2+ system for Cys/Hcy/GSH were 2.5-22.5/5-45/5-50 μM and 0.11/0.07/0.05 μM, respectively. Surprisingly, the high or low concentration of Eu3+-DTPA-bis(AMC)/Cu2+ can significantly affect the selectivity of the sensing system to biothiols (Cys/GSH/Hcy). When the concentration of the Eu3+-DTPA-bis(AMC)/Cu2+ system is 10.0 μΜ, it could recognize biothiols (Cys/GSH/Hcy) from other substances, but when the concentration is as low as 3.3 μM, it could further specifically distinguished Cys from Hcy/GSH. Owing to the high anti-interference characteristics, accuracy and specificity, the sensing system was well applied to the cascade detection of Cu2+ in actual environmental samples and Cys in biological and food samples, including FBS, urine, milk, beverage, fresh juice with the satisfactory recoveries from 96.20 to 106.80 %.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; College of Pharmacy, Jinzhou Medical University, 121001, PR China
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University, 121001, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Dawei Fang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
2
|
Kumar M, Chaudhary G, Singh AP. BODIPY-Hg 2+ Complex: A Fluorescence "Turn-ON" Sensor for Cysteine Detection. ANAL SCI 2021; 37:283-292. [PMID: 32863336 DOI: 10.2116/analsci.20p255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/09/2023]
Abstract
A BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) based pioneering sensing material (HLPy) having 2-amino pyridine as receptor was synthesized and used for the selective detection of Hg2+ ions. The synthesized HLPy features a high affinity towards Hg2+ (ka = 2.04 × 105 M-1), accompanied by effective quenching of fluorescence in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 7.4) with 54 nM limit of detection (LOD). The emission titration experiments (Job's plot) in the presence of varying mole-fraction of Hg2+ ions reveals the formation of non-fluorescent 2:1 coordination complex [Hg(LPy)2]. The resulting non-fluorescent [Hg(LPy)2] was thoroughly characterized using various spectroscopic techniques and analyses. Interestingly, the non-fluorescent complex [Hg(LPy)2] is able to specifically respond towards Cys over other biothiols and amino acids through a reversible de-complexation mechanism. As a result, the remarkable recovery of the fluorescence can be observed. The limit of detection (LOD) for Cys detection is estimated to be 29 nM in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 8.0). The reversibility and reusability of [Hg(LPy)2] were achieved by the sequential addition of Cys and Hg2+ ions up to five cycles. Moreover, the removal of Hg2+ ions up to 89% from aqueous samples using HLPy was successfully demonstrated.
Collapse
Affiliation(s)
- Monu Kumar
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| | - Garima Chaudhary
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| | - Amit Pratap Singh
- Department of Applied Sciences, National Institute of Technology Delhi, New Delhi, 110 040, India
| |
Collapse
|
3
|
Priyanga S, Khamrang T, Velusamy M, Karthi S, Ashokkumar B, Mayilmurugan R. Coordination geometry-induced optical imaging of l-cysteine in cancer cells using imidazopyridine-based copper(ii) complexes. Dalton Trans 2019; 48:1489-1503. [PMID: 30632585 DOI: 10.1039/c8dt04634d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overexpression of cysteine cathepsins proteases has been documented in a wide variety of cancers, and enhances the l-cysteine concentration in tumor cells. We report the synthesis and characterization of copper(ii) complexes [Cu(L1)2(H2O)](SO3CF3)2, 1, L1 = 3-phenyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine, [Cu(L2)2(SO3CF3)]SO3CF3, 2, L2 = 3-(4-methoxyphenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine, [Cu(L3)2(H2O)](SO3CF3)2, 3, L3 = 3-(3,4-dimethoxy-phenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine and [Cu(L4)2(H2O)](SO3CF3)2, 4, L4 = dimethyl-[4-(1-pyridin-2-yl-imidazo[1,5-a]pyridin-3-yl)phenyl]amine as 'turn-on' optical imaging probes for l-cysteine in cancer cells. The molecular structure of complexes adopted distorted trigonal pyramidal geometry (τ, 0.68-0.87). Cu-Npy bonds (1.964-1.989 Å) were shorter than Cu-Nimi bonds (2.024-2.074 Å) for all complexes. Geometrical distortion was strongly revealed in EPR spectra, showing g‖ (2.26-2.28) and A‖ values (139-163 × 10-4 cm-1) at 70 K. The d-d transitions appeared around 680-741 and 882-932 nm in HEPES, which supported the existence of five-coordinate geometry in solution. The Cu(ii)/Cu(i) redox potential of 1 (0.221 V vs. NHE) was almost identical to that of 2 and 3 but lower than that of 4 (0.525 V vs. NHE) in HEPES buffer. The complexes were almost non-emissive in nature, but became emissive by the interaction of l-cysteine in 100% HEPES at pH 7.34 via reduction of Cu(ii) to Cu(i). Among the probes, probe 2 showed selective and efficient turn-on fluorescence behavior towards l-cysteine over natural amino acids with a limit of detection of 9.9 × 10-8 M and binding constant of 2.3 × 105 M-1. The selectivity of 2 may have originated from a nearly perfect trigonal plane adopted around a copper(ii) center (∼120.70°), which required minimum structural change during the reduction of Cu(ii) to Cu(i) while imaging Cys. The other complexes, with their distorted trigonal planes, required more reorganizational energy, which resulted in poor selectivity. Probe 2 was employed for optical imaging of l-cysteine in HeLa cells and macrophages. It exhibited brighter fluorescent images by visualizing Cys at pH 7.34 and 37 °C. It showed relatively less toxicity for these cell lines as ascertained by the MTT assay.
Collapse
Affiliation(s)
- Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Themmila Khamrang
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Sellamuthu Karthi
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
4
|
Thangaraj A, Bhardwaj V, Sahoo SK. A multi-analyte selective dansyl derivative for the fluorescence detection of Cu(ii) and cysteine. Photochem Photobiol Sci 2019; 18:1533-1539. [DOI: 10.1039/c9pp00080a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new multi-analyte selective fluorescence chemosensor DA was synthesized by a simple one pot reaction between dansyl chloride and 2-aminobenzohydrazide in the presence of a base.
Collapse
Affiliation(s)
- Anand Thangaraj
- Department of Applied Chemistry
- SV National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Vinita Bhardwaj
- Department of Applied Chemistry
- SV National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Suban K. Sahoo
- Department of Applied Chemistry
- SV National Institute of Technology (SVNIT)
- Surat-395007
- India
| |
Collapse
|
5
|
Mukherjee S, Hazra S, Chowdhury S, Sarkar S, Chattopadhyay K, Pramanik A. A novel pyrrole fused coumarin based highly sensitive and selective fluorescence chemosensor for detection of Cu2+ ions and applications towards live cell imaging. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo SK, Kuwar A, Singh N. Chemosensors for biogenic amines and biothiols. J Mater Chem B 2018; 6:4872-4902. [PMID: 32255063 DOI: 10.1039/c8tb00732b] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is burgeoning interest among supramolecular chemists to develop novel molecular systems to detect biogenic amines and bio-thiols in aqueous and non-aqueous media due to their potential role in biological processes. Biogenic amines are biologically important targets because of their involvement in the energy metabolism of human biological systems and their requirement is met through food and nutrition. However, the increasing instances of serious health problems due to food toxicity have raised the quality of food nowadays. Biogenic amines have been frequently considered as the markers or primary quality parameters of foods like antioxidant properties, freshness and spoilage. For instance, these amines such as spermine, spermidine, cadavarine, etc. may originate during microbial decarboxylation of amino acids of fermented foods/beverages. These amines may also react with nitrite available in certain meat products and concomitantly produce carcinogenic nitrosamine compounds. On the other hand, it is also well established that biothiols, particularly, thiol amino acids, provide the basic characteristics to food including flavor, color and texture that determine its acceptability. For instance, the reduction of thiol groups produces hydrogen sulfide which reduces flavour as in rotten eggs and spoiled fish, and the presence of hydrogen sulfide in fish is indicative of spoilage. Thus, biogenic amines and bio-thiols have attracted the profound interest of researchers as analytical tools for their quantification. Much scientific and technological information is issued every year, where the establishment of precise interactions of biogenic amines and bio-thiols with other molecules is sought in aqueous and non-aqueous media. This review summarizes the optical chemosensors developed for the selective detection of biogenic amines and bio-thiols.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University (PU), Chandigarh-160014, India.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Y, Niu LY, Chen YZ, Yang QZ. A self-assembled fluorescent nanoprobe for detection of GSH and dual-channel imaging. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Chai G, Liu Q, Fei Q, Zhang J, Sun X, Shan H, Feng G, Huan Y. A selective and sensitive fluorescent sensor for cysteine detection based on bi-8-carboxamidoquinoline derivative and Cu2+
complex. LUMINESCENCE 2017; 33:153-160. [DOI: 10.1002/bio.3385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/02/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Guoping Chai
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Qingwen Liu
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Qiang Fei
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Jinling Zhang
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Xiaoxiao Sun
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Hongyan Shan
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Guodong Feng
- College of Chemistry; Jilin University; Changchun People's Republic of China
| | - Yanfu Huan
- College of Chemistry; Jilin University; Changchun People's Republic of China
| |
Collapse
|
9
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
10
|
Maheshwaran D, Priyanga S, Mayilmurugan R. Copper(ii)-benzimidazole complexes as efficient fluorescent probes forl-cysteine in water. Dalton Trans 2017; 46:11408-11417. [DOI: 10.1039/c7dt01895a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper(ii)-benzimidazole complexes could detectl-cysteine over other natural amino acids at pH 7.34 by a ‘turn-on’ fluorescence mechanismviathe reduction of Cu(ii) to Cu(i) followed by displacement with excellent selectivity.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
11
|
Said AI, Georgiev NI, Bojinov VB. Sensor activity and logic behavior of dihydroxyphenyl hydrazone derivative as a chemosensor for Cu 2+ determination in alkaline aqueous solutions. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|