1
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
2
|
Bawden JC, Francis PS, DiLuzio S, Hayne DJ, Doeven EH, Truong J, Alexander R, Henderson LC, Gómez DE, Massi M, Armstrong BI, Draper FA, Bernhard S, Connell TU. Reinterpreting the Fate of Iridium(III) Photocatalysts─Screening a Combinatorial Library to Explore Light-Driven Side-Reactions. J Am Chem Soc 2022; 144:11189-11202. [PMID: 35704840 DOI: 10.1021/jacs.2c02011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.
Collapse
Affiliation(s)
- Joseph C Bawden
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Johnny Truong
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Richard Alexander
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Blake I Armstrong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Felicity A Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
3
|
Newman B, Chen L, Henderson LC, Doeven EH, Francis PS, Hayne DJ. Water-Soluble Iridium(III) Complexes Containing Tetraethylene-Glycol-Derivatized Bipyridine Ligands for Electrogenerated Chemiluminescence Detection. Front Chem 2020; 8:583631. [PMID: 33195075 PMCID: PMC7593781 DOI: 10.3389/fchem.2020.583631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Four cationic heteroleptic iridium(III) complexes containing a 2,2′-bipyridine (bpy) ligand with one or two tetraethylene glycol (TEG) groups attached in the 4 or 4,4′ positions were synthesized to create new water-soluble electrogenerated chemiluminescence (ECL) luminophores bearing a convenient point of attachment for the development of ECL-labels. The novel TEG-derivatized bipyridines were incorporated into [Ir(C∧N)2(R-bpy-R′)]Cl complexes, where C∧N = 2-phenylpyridine anion (ppy) or 2-phenylbenzo[d]thiazole anion (bt), through reaction with commercially available ([Ir(C∧N)2(μ-Cl)]2 dimers. The novel [Ir(C∧N)2(Me-bpy-TEG)]Cl and [Ir(C∧N)2(TEG-bpy-TEG)]Cl complexes in aqueous solution largely retained the redox potentials and emission spectra of the parent [Ir(C∧N)2(Me-bpy-Me)]PF6 (where Me-bpy-Me = 4,4′methyl-2,2′-bipyridine) luminophores in acetonitrile, and exhibited ECL intensities similar to those of [Ru(bpy)3]2+ and the analogous [Ir(C∧N)2(pt-TEG]Cl complexes (where pt-TEG = 1-(TEG)-4-(2-pyridyl)-1,2,3-triazole). These complexes can be readily adapted for bioconjugation and considering the spectral distributions of [Ir(ppy)2(Me-bpy-TEG)]+ and [Ir(ppy)2(pt-TEG)]+, show a viable strategy to create ECL-labels with different emission colors from the same commercial [Ir(ppy)2(μ-Cl)]2 precursor.
Collapse
Affiliation(s)
- Ben Newman
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia.,Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Lifen Chen
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Egan H Doeven
- Center for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
4
|
Connell TU, Fraser CL, Czyz ML, Smith ZM, Hayne DJ, Doeven EH, Agugiaro J, Wilson DJD, Adcock JL, Scully AD, Gómez DE, Barnett NW, Polyzos A, Francis PS. The Tandem Photoredox Catalysis Mechanism of [Ir(ppy)2(dtb-bpy)]+ Enabling Access to Energy Demanding Organic Substrates. J Am Chem Soc 2019; 141:17646-17658. [DOI: 10.1021/jacs.9b07370] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Catherine L. Fraser
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Milena L. Czyz
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zoe M. Smith
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - David J. Hayne
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Egan H. Doeven
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC 3220, Australia
| | - Johnny Agugiaro
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jacqui L. Adcock
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | | | - Daniel E. Gómez
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Neil W. Barnett
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Paul S. Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
5
|
Ma Y, Zhou C, Doughty B, Easley DC, Deterding J, Ma B. Solvent Effect on the Photoinduced Structural Change of a Phosphorescent Molecular Butterfly. Chemistry 2017; 23:17734-17739. [DOI: 10.1002/chem.201703259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ying‐Zhong Ma
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Chenkun Zhou
- Department of Chemical and Biomedical Engineering FAMU-FSU College of Engineering Tallahassee FL 32310 USA
| | - Benjamin Doughty
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Davis C. Easley
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Justin Deterding
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Biwu Ma
- Department of Chemical and Biomedical Engineering FAMU-FSU College of Engineering Tallahassee FL 32310 USA
- Materials Science and Engineering Program Florida State University Tallahassee FL 32306 USA
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| |
Collapse
|