Takeshita T, Hara M. Photoionization and trans-to-cis isomerization of β-cyclodextrin-encapsulated azobenzene induced by two-color two-laser-pulse excitation.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018;
193:475-479. [PMID:
29289746 DOI:
10.1016/j.saa.2017.12.061]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υt→c) by 27%. It was concluded that the increase in Υt→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (Sn), which was reached by S1→Sn transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools.
Collapse