1
|
Li T, Zuo X, Zhang S, Kong Q. Inactivation of antibiotic resistant bacteria from stormwater runoff using UVA/LED and its potential risks. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2963-2973. [PMID: 36515199 DOI: 10.2166/wst.2022.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance in stormwater runoff. However, there is no available literature about the control of antibiotic resistant bacteria (ARB) through 365 nm ultraviolet light-emitting diode (UVA/LED). In this study, batch experiments were conducted to investigate ARB inactivation kinetics, effects of light intensity and water matrix (including suspended solid (SS) concentration, initial pH and bacteria concentration), and potential transmission risks after UVA/LED irradiation. Results showed that ARB inactivation efficiencies reached 6.31 log reduction at 8 mW/cm2 (86 J/cm2) of UVA/LED for 180 min. ARB inactivation efficiencies increased with the increase of light intensity, and showed a linear relationship. ARB inactivation decreased with increasing SS levels, and the largest inactivation efficiencies was 3.56 log reduction at 50 mg/L of SS. Initial pH had slight effect on ARB inactivation through UVA/LED irradiation. A low initial bacteria concentration (105 CFU/mL) was not necessarily associated with good ARB inactivation (3.59 log reduction). After UVA/LED irradiation, ARB was hardly detected during 12 hr of dark repair, and the transfer frequency of kanamycin resistance gene was increased to 5.43 × 10-4. These suggested that the application of UVA/LED to inactivate ARB in stormwater runoff was feasible and desirable in this study.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - QingGang Kong
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
2
|
Chow ATS, Ulus Y, Huang G, Kline MA, Cheah WY. Challenges in quantifying and characterizing dissolved organic carbon: Sampling, isolation, storage, and analysis. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:837-871. [PMID: 35899915 DOI: 10.1002/jeq2.20392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Despite the advancements in analytical techniques, there are still great challenges and difficulties in accurately and effectively quantifying and characterizing dissolved organic carbon (DOC) in environmental samples. The objectives of this review paper are (a) to understand the roles and variability of DOC along the water continuum; (b) to identify the constraints, inconsistences, limitations, and artifacts in DOC characterization; and (c) to provide recommendations and remarks to improve the analytical accuracy. For the first objective, we summarize the four ecological and engineering roles of DOC along the water continuum from source water to municipal utility, including nutrients and energy sources, controlling the fates of micropollutants, buffering capacity, and treatability and precursors of disinfection byproducts. We also discuss three major challenges in DOC analysis, including spatial and temporal variations, degradability and stability, and unknown structures and formulas. For the second objective, we review the procedures and steps in DOC analysis, including sampling in diverse environmental matrices, isolation of DOC fraction, storage and preservation techniques, and analyses on bulk chemical characteristics. We list and discuss the available options and evaluate the advantages and disadvantages of each choice. Last, we provide recommendations and remarks for each stage: sampling, isolation, storage, and analysis.
Collapse
Affiliation(s)
- Alex Tat-Shing Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC, 29634, USA
- Baruch Institute of Coastal Ecology & Forest Science, Clemson Univ., Clemson, SC, 29634, USA
| | - Yener Ulus
- Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC, 29634, USA
| | - Guocheng Huang
- Dep. of Environmental Science and Engineering, Fuzhou Univ., Minhou, Fujian, 350108, P. R. China
| | - Michael Alan Kline
- Baruch Institute of Coastal Ecology & Forest Science, Clemson Univ., Clemson, SC, 29634, USA
| | - Wing-Yee Cheah
- Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC, 29634, USA
- Baruch Institute of Coastal Ecology & Forest Science, Clemson Univ., Clemson, SC, 29634, USA
| |
Collapse
|
3
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Role of biofilm on virus inactivation in limestone aquifers: implications for managed aquifer recharge. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:21-34. [PMID: 32399218 PMCID: PMC7203390 DOI: 10.1007/s40201-019-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND Virus, as nano-sized microorganisms are prevalent in aquifers, which threaten groundwater quality and human health wellbeing. Virus inactivation by attachment onto the limestone surfaces is a determining factor in the transport and retention behavior of virus in carbonaceous aquifers. METHODS In the present study, the inactivation of MS2 -as a model virus- by attachment onto the surfaces of limestone grains was investigated in a series of batch experiments under different conditions such as limestone particle size distribution (0.25-0.50, 0.5-1 and 1-2 mm), treated wastewater and RO water, temperature (4 and 22 °C), initial MS2 concentrations (103-107 PFU/mL) and static and dynamic conditions. The experimental data of MS2 inactivation was also fitted to a non-linear kinetic model with shoulder and tailing. The characteristics of biofilm on the surfaces of limestone aquifer materials were assessed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). RESULTS The inactivation rate of virus decreased with increasing the adsorbent diameter. Furthermore, virus inactivation was greater at room temperature (22 °C) than 4 °C, in both static and dynamic conditions. The inactivation of virus via attachment onto the limestone aquifer materials in dynamic conditions was higher than under static conditions. In addition, fitting the experimental data with a kinetic model showed that virus inactivation was high at higher temperature, smaller limestone grains and dynamic conditions. Moreover, the experiments with treated wastewater showed that in authentic aqueous media, the virus inactivation was considerably higher than in RO water, due to the presence of either monovalent or divalent cations and surface roughness created by biofilms. CONCLUSION Finally, in terms of managed aquifer recharge systems, the presence of biofilm increases bacteria and virus retention onto the aquifer surfaces. Graphical abstract.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, South Australia
- National Centre for Groundwater Research and Training, Bedford Park, SA 5001 Australia
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, South Australia
- National Centre for Groundwater Research and Training, Bedford Park, SA 5001 Australia
| | - John L. Hutson
- College of Science and Engineering, Flinders University, Adelaide, South Australia
| | - Howard J. Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, South Australia
- National Centre for Groundwater Research and Training, Bedford Park, SA 5001 Australia
| |
Collapse
|
4
|
Zhan X, Teplitzky P, Diskin-Posner Y, Sundararajan M, Ullah Z, Chen QC, Shimon LJW, Saltsman I, Mahammed A, Kosa M, Baik MH, Churchill DG, Gross Z. Maximizing Property Tuning of Phosphorus Corrole Photocatalysts through a Trifluoromethylation Approach. Inorg Chem 2019; 58:6184-6198. [DOI: 10.1021/acs.inorgchem.9b00436] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Peter Teplitzky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mahesh Sundararajan
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zakir Ullah
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Irena Saltsman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Monica Kosa
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - David G. Churchill
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|