1
|
Simelane NWN, Abrahamse H. Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures. Front Mol Biosci 2024; 10:1340212. [PMID: 38259685 PMCID: PMC10801020 DOI: 10.3389/fmolb.2023.1340212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In conventional photodynamic therapy (PDT), effective delivery of photosensitizers (PS) to cancer cells can be challenging, prompting the exploration of active targeting as a promising strategy to enhance PS delivery. Typically, two-dimensional (2-D) monolayer cell culture models are used for investigating targeted photodynamic therapy. However, despite their ease of use, these cell culture models come with certain limitations due to their structural simplicity when compared to three-dimensional (3-D) cell culture models such as multicellular tumour spheroids (MCTSs). In this study, we prepared gold nanoparticles (AuNPs) that were functionalized with antibodies and loaded with tetra sulphonated zinc phthalocyanine (ZnPcS4). Characterization techniques including transmission electron microscopy (TEM) was used to determine the size and morphology of the prepared nanoconjugates. We also conducted a comparative investigation to assess the photodynamic effects of ZnPcS4 alone and/or conjugated onto the bioactively functionalized nanodelivery system in colorectal Caco-2 cells cultured in both in vitro 2-D monolayers and 3-D MCTSs. TEM micrographs revealed small, well distributed, and spherical shaped nanoparticles. Our results demonstrated that biofunctionalized nanoparticle mediated PDT significantly inhibited cell proliferation and induced apoptosis in Caco-2 cancer monolayers and, to a lesser extent, in Caco-2 MCTSs. Live/dead assays further elucidated the impact of actively targeted nanoparticle-photosensitizer nanoconstruct, revealing enhanced cytotoxicity in 2-D cultures, with a notable increase in dead cells post-PDT. In 3-D spheroids, however, while the presence of targeted nanoparticle-photosensitizer system facilitated improved therapeutic outcomes, the live/dead results showed a higher number of viable cells after PDT treatment compared to their 2-D monolayer counterparts suggesting that MCTSs showed more resistance to PS drug as compared to 2-D monolayers. These findings suggest a high therapeutic potential of the multifunctional nanoparticle as a targeted photosensitizer delivery system in PDT of colorectal cancer. Furthermore, the choice of cell culture model influenced the response of cancer cells to PDT treatment, highlighting the feasibility of using MCTSs for targeted PS delivery to colorectal cancer cells.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Nkune NW, Abrahamse H. The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids. Pharmaceutics 2023; 15:2264. [PMID: 37765232 PMCID: PMC10535874 DOI: 10.3390/pharmaceutics15092264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma remains a major public health concern that is highly resistant to standard therapeutic approaches. Photodynamic therapy (PDT) is an underutilised cancer therapy with an increased potency and negligible side effects, and it is non-invasive compared to traditional treatment modalities. Three-dimensional multicellular tumour spheroids (MCTS) closely resemble in vivo avascular tumour features, allowing for the more efficient and precise screening of novel anticancer agents with various treatment combinations. In this study, we utilised A375 human melanoma spheroids to screen the phototoxic effect of zinc phthalocyanine tetrasulfonate (ZnPcS4) conjugated to gold nanoparticles (AuNP). The nanoconjugate was synthesised and characterised using ultraviolet-visible spectroscopy, a high-resolution transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential (ZP). The phototoxicity of the nanoconjugate was tested on the A375 MCTS using PDT at a fluency of 10 J/cm2. After 24 h, the cellular responses were evaluated via microscopy, an MTT viability assay, an ATP luminescence assay, and cell death induction using annexin propidium iodide. The MTT viability assay demonstrated that the photoactivated ZnPcS4, at a concentration of 12.73 µM, caused an approximately 50% reduction in the cell viability of the spheroids. When conjugated to AuNPs, the latter significantly increased the cellular uptake and cytotoxicity in the melanoma spheroids via the induction of apoptosis. This novel Zinc Phthalocyanine Nanoconjugate shows promise as a more effective PDT treatment modality.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
3
|
Abramczyk H, Brozek-Pluska B, Kopeć M. Double face of cytochrome c in cancers by Raman imaging. Sci Rep 2022; 12:2120. [PMID: 35136078 PMCID: PMC8826388 DOI: 10.1038/s41598-022-04803-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cytochrome c (Cyt c) is a key protein that is needed to maintain life (respiration) and cell death (apoptosis). The dual-function of Cyt c comes from its capability to act as mitochondrial redox carrier that transfers electrons between the membrane-embedded complexes III and IV and to serve as a cytoplasmic apoptosis-triggering agent, activating the caspase cascade. However, the precise roles of Cyt c in mitochondria, cytoplasm and extracellular matrix under normal and pathological conditions are not completely understood. To date, no pathway of Cyt c release that results in caspase activation has been compellingly demonstrated in any invertebrate. The significance of mitochondrial dysfunctionality has not been studied in ductal carcinoma to the best of our knowledge. We used Raman spectroscopy and imaging to monitor changes in the redox state of the mitochondrial cytochromes in ex vivo surgically resected specimens of human breast tissues, and in vitro human breast cells of normal cells (MCF 10A), slightly malignant cells (MCF7) and highly aggressive cells (MDA-MB-231). We showed that Raman imaging provides insight into the biology of human breast ductal cancer. Here we show that proper concentration of monounsaturated fatty acids, saturated fatty acids, cardiolipin and Cyt c is critical in the correct breast ductal functioning and constitutes an important parameter to assess breast epithelial cells integrity and homeostasis. We look inside human breast ducts by Raman imaging answering fundamental questions about location and distribution of various biochemical components inside the lumen, epithelial cells of the duct and the extracellular matrix around the cancer duct during cancer development in situ. Our results show that human breast cancers demonstrate a redox imbalance compared to normal tissue. The reduced cytochrome c is upregulated in all stages of cancers development. The results of the paper shed light on a largely non-investigated issues regarding cytochromes and mitochondrial function in electron transfer chain. We found in histopathologically controlled breast cancer duct that Cyt c, cardiolipin, and palmitic acid are the main components inside the lumen of cancerous duct in situ. The presented results show direct evidence that Cyt c is released to the lumen from the epithelial cells in cancerous duct. In contrast the lumen in normal duct is empty and free of Cyt c. Our results demonstrate how Cyt c is likely to function in cancer development. We anticipate our results to be a starting point for more sophisticated in vitro and in vivo animal models. For example, the correlation between concentration of Cyt c and cancer grade could be tested in various types of cancer. Furthermore, Cyt c is a target of anti-cancer drug development and a well-defined and quantitative Raman based assay for oxidative phosphorylation and apoptosis will be relevant for such developments.
Collapse
Affiliation(s)
- H Abramczyk
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| | - B Brozek-Pluska
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - M Kopeć
- Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| |
Collapse
|
4
|
Simelane NWN, Kruger CA, Abrahamse H. Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer. Int J Mol Sci 2021; 22:9779. [PMID: 34575942 PMCID: PMC8466279 DOI: 10.3390/ijms22189779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive cancer that remains a challenge to diagnose and treat. Photodynamic diagnosis (PDD) and therapy (PDT) are novel alternative techniques, which can enhance early diagnosis, as well as elicit tumor cell death. This is accomplished through photosensitizer (PS) mediated fluorescence and cytotoxic reactive oxygen species activation upon laser light irradiation excitation at specific low and high range wavelengths, respectively. However, the lack of PS target tumor tissue specificity often hampers these techniques. This study successfully fabricated a bioactive nanoconjugate, ZnPcS4-AuNP-S-PEG5000-NH2-Anti-GCC mAb (BNC), based upon a polyethylene glycol-gold nanoparticle, which was multi-functionalized with a fluorescent PDT metalated zinc phthalocyanine PS, and specific anti-GCC targeting antibodies, to overcome CRC PDD and PDT challenges. The BNC was found to be stable and showed selectively improved subcellular accumulation within targeted CRC for improved PDD and PDT outcomes in comparison to healthy in vitro cultured cells. Additionally, the BNC reported significantly higher late apoptotic PDT-induced CRC cell death rates (34% ***) when compared to PDT PS administration alone (15% *). These results indicated that the improved PDD and PDT outcomes were due to the specific PS accumulation in CRC cells through nanoparticle carriage and bioactive anti-GCC targeting.
Collapse
Affiliation(s)
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; (N.W.N.S.); (H.A.)
| | | |
Collapse
|
5
|
Yang S, Yang G, Xu Y, Huang H, Huang L, Liu J, Pan H. Tetrasulfonate substituted phthalocyaninatozinc (II) (ZnTSPc) modification on the two dimensional surface of ZnO: On-surface synthesis, interface characteristics, and its selective photodegradation under visible irradiation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Brozek-Pluska B, Jarota A, Kania R, Abramczyk H. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells. Molecules 2020; 25:E2688. [PMID: 32531903 PMCID: PMC7321347 DOI: 10.3390/molecules25112688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Photodynamic therapy is a clinically approved alternative method for cancer treatment in which a combination of nontoxic drugs known as photosensitizers and oxygen is used. Despite intensive investigations and encouraging results, zinc phthalocyanines (ZnPcs) have not yet been approved as photosensitizers for clinical use. Label-free Raman imaging of nonfixed and unstained normal and cancerous colon human tissues and normal human CCD18-Co and cancerous CaCo-2 cell lines, without and after adding ZnPcS4 photosensitizer, was analyzed. The biochemical composition of normal and cancerous colon tissues and colon cells without and after adding ZnPcS4 at the subcellular level was determined. Analyzing the fluorescence/Raman signals of ZnPcS4, we found that in normal human colon tissue samples, in contrast to cancerous ones, there is a lower affinity to ZnPcS4 phthalocyanine. Moreover, a higher concentration in cancerous tissue was concomitant with a blue shift of the maximum peak position specific for the photosensitizer from 691-695 nm to 689 nm. Simultaneously for both types of samples, the signal was observed in the monomer region, confirming the excellent properties of ZnPcS4 for photo therapy (PDT). For colon cell experiments with a lower concentration of ZnPcS4 photosensitizer, c = 1 × 10-6 M, the phthalocyanine was localized in mitochondria/lipid structures; for a higher concentration, c = 9 × 10-6 M, localization inside the nucleus was predominant. Based on time-resolved experiments, we found that ZnPcS4 in the presence of biological interfaces features longer excited-state lifetime photosensitizers compared to the aqueous solution and bare ZnPcS4 film on CaF2 substrate, which is beneficial for application in PDT.
Collapse
Affiliation(s)
- Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.J.); (R.K.); (H.A.)
| | | | | | | |
Collapse
|
7
|
Abramczyk H, Brozek-Pluska B, Jarota A, Surmacki J, Imiela A, Kopec M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev Mol Diagn 2020; 20:99-115. [PMID: 32013616 DOI: 10.1080/14737159.2020.1724092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Currently, intensely developing of linear and non-linear optical methods for cancer detection provides a valuable tool to improve sensitivity and specificity. One of the main reasons for insufficient progress in cancer diagnostics is related to the fact that most cancer types are not only heterogeneous in their genetic composition but also reside in varying microenvironments and interact with different cell types. Until now, no technology has been fully proven for effective detecting of invasive cancer, which infiltrating the extracellular matrix.Areas covered: This review investigates the current status of Raman spectroscopy and Raman imaging for brain and breast cancer diagnostics. Moreover, the review provides a comprehensive overview of the applicability of atomic force microscopy (AFM), linear and non-linear optics in cancer research as a gateway to tumor cell identity.Expert commentary: A combination of linear and non-linear optics, particularly Raman-driven methods, has many additional advantages to identify alterations in cancer cells that are crucial for their proliferation and that distinguish them from normal cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Arkadiusz Jarota
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
8
|
Soganci T, Baygu Y, Kabay N, Gök Y, Ak M. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21654-21665. [PMID: 29870222 DOI: 10.1021/acsami.8b06206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, nonperipherally alkyl-linked carbazole conjugated novel zinc(II) phthalocyanine was synthesized by cyclotetramerization reaction of 6-(9 H-carbazol-9-yl)hexane-1-thiol and 3,6-bis(tosyloxy) phthalonitrile in a one-step reaction. Optical, electrical, and sensing properties of this super structured polycarbazole obtained by electropolymerization are compared with peripherally alkyl-linked polycarbazole-based zinc(II) phthalocyanine. It has been found that the attachment of alkyl-linked carbazoles to the phthalocyanine molecule in either peripheral or nonperipheral positions has a great effect on the optical and electrical properties and sensing ability of the resulting polycarbazole derivatives. P(n-ZnPc) has the highest electrochromic contrast (70.5%) among the derivatives of zinc(II) phthalocyanines in the literature. In addition to these, the sensor platform has been successfully established, and analytical optimizations have been carried out. When the sensors prepared with zinc(II) phthalocyanine are examined, it was specified that the n-ZnPc- co-TP/GOx was ranked first in the literature with high sensor response and stability. As a result, by changing of the peripheral and nonperipheral position of phthalocyanines, their physical properties can be tuned to meet the requirements of desired technological application.
Collapse
Affiliation(s)
- Tugba Soganci
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Yasemin Baygu
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Nilgün Kabay
- Department of Biomedical Engineering , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Yaşar Gök
- Department of Chemical Engineering , Usak University , Usak , Turkey
| | - Metin Ak
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| |
Collapse
|
9
|
Miao Q, Liang M, Liu Q, Wang JJ, Sun E, Xu Y. Dynamical propagation of nanosecond pulses in Naphthalocyanines and Phthalocyanines. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|