1
|
Baamer DF, Abd El Maksod IH. Surface Modification of Zinc Ferrite with Titanium to Be a Photo-Active Catalyst in Commercial LED Light. Catalysts 2023; 13:1082. [DOI: 10.3390/catal13071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Titanium-doped zinc ferrite was used as a photo catalyst for breaking down C-C and C-H bonds of methylene blue dye as a model for the decomposition of organic pollutants. Different concentrations of Ti were used to impede into the spinel structure of zinc ferrite by in situ addition during the preparation. Different characterization techniques were used to characterize the prepared materials including the deep analysis of the electronic spectra, which proved the surface modification of ferrite due to the Ti doping. In addition, we make a comparison study of photo degradation using ordinary UV irradiation and commercial LED light irradiation, which gives very promising results. A correlation between the structure and the photo catalytic behavior of the materials is assigned.
Collapse
Affiliation(s)
- Doaa F. Baamer
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 42805, Saudi Arabia
| | | |
Collapse
|
2
|
Ullah S, Ferreira-Neto EP, Khan AA, Medeiros IPM, Wender H. Supported nanostructured photocatalysts: the role of support-photocatalyst interactions. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:219-240. [PMID: 36178668 DOI: 10.1007/s43630-022-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Heterogeneous photocatalysis employing semiconductor oxide photocatalysts is a sustainable and promising method for environmental remediation and clean energy generation. In this context, nanostructured photocatalysts, with at least one dimension in the 1‒100 nm size regime, have attracted ever-growing attention due to their unique and often enhanced size-dependent physicochemical properties. While their reduced size ensures enhanced photocatalytic performance, the same makes it difficult and time/energy-demanding to remove/recover such nanostructured photocatalysts from aqueous media. This fundamental limitation has paved the way towards developing supported nanophotocatalysts where the active photocatalytic nanostructures are coated on the surface of polymeric or inorganic support materials, often in a core@shell conformation. This arrangement solves the problem of photocatalysts' recovery for effective reuse or recycling and leads to improved and desired target properties due to specific photocatalyst-support interactions. While the enhanced physicochemical properties of supported photocatalysts have been widely studied in many target applications, the role of support-photocatalysts interactions in improving these properties remains unexplored. This review article provides an updated viewpoint on the photocatalyst-support interactions and the resulting unique physiochemical properties important for diverse photochemical applications and the design of practical devices. While exploring the properties of supported nanostructured metal oxide/sulfides photocatalysts such as TiO2 and MoS2, we also briefly discuss the common strategies employed to coat the active nanomaterials on the surface of different supports (organic/polymeric, inorganic, active, inert, and magnetic).
Collapse
Affiliation(s)
- Sajjad Ullah
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan.
| | - Elias P Ferreira-Neto
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Abrar A Khan
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan
| | - Isaac P M Medeiros
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| |
Collapse
|
3
|
Patil BB. A review: Influence of divalent, trivalent, rare earth and additives ions on Ni–Cu–Zn ferrites. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Dippong T, Cadar O, Goga F, Toloman D, Levei EA. Impact of Ni Content on the Structure and Sonophotocatalytic Activity of Ni-Zn-Co Ferrite Nanoparticles. Int J Mol Sci 2022; 23:ijms232214167. [PMID: 36430650 PMCID: PMC9696630 DOI: 10.3390/ijms232214167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparticles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal treatment, were investigated. The thermal analysis confirmed the formation of metal succinate precursors up to 200 °C, their decomposition to metal oxides and the formation of Ni-Zn-Co ferrites up to 500 °C. The crystalline phases, crystallite size and lattice parameter were determined based on X-ray diffraction patterns. Transmission electron microscopy revealed the shape, size, and distribution pattern of the ferrite nanoparticles. The particle sizes ranged between 34 and 40 nm. All the samples showed optical responses in the visible range. The best sonophotocatalytic activity against the rhodamine B solution under visible irradiation was obtained for Ni0.3Zn0.3Co0.4Fe2O4@SiO2.
Collapse
Affiliation(s)
- Thomas Dippong
- Faculty of Science, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Firuta Goga
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Dana Toloman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
5
|
Mustafa FS, Oladipo AA, Gazi M. Photocatalytic Degradation of Toxic Phenolic Compound and Bacterial Inactivation by Ternary Li doped Zn
0.5
Ni
0.5
Fe
2
O
4. ChemistrySelect 2022. [DOI: 10.1002/slct.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory Department of Chemistry Faculty of Arts and Sciences Eastern Mediterranean University, Famagusta TR North Cyprus via Mersin 10 99450 Famagusta Turkey
| | - Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory Department of Chemistry Faculty of Arts and Sciences Eastern Mediterranean University, Famagusta TR North Cyprus via Mersin 10 99450 Famagusta Turkey
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory Department of Chemistry Faculty of Arts and Sciences Eastern Mediterranean University, Famagusta TR North Cyprus via Mersin 10 99450 Famagusta Turkey
| |
Collapse
|
6
|
Tian B, Zhao W, Cui Y, Chu H, Qi S, Wang J, Xin B. Utilizing waste Zn-Mn batteries in combination with waste SCR catalyst to construct a magnetically recoverable and highly photocatalytic materials. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Taghipour T, Karimipour G, Ghaedi M, Asfaram A, Javadian H, Sabzehmeidani MM, Karimi H. Photoelectro-Fenton/photocatalytic process for decolorization of an organic compound by Ag:Cd-1,4-BDOAH2 nano-photocatalyst: Response surface modeling and central composite design optimization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.113689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Abd Elkodous M, S El-Sayyad G, Abdel Maksoud MIA, Kumar R, Maegawa K, Kawamura G, Tan WK, Matsuda A. Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124657. [PMID: 33272728 DOI: 10.1016/j.jhazmat.2020.124657] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The problem of hazardous wastewater remediation is a complicated issue and a global challenge. Herein, a layered Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was prepared and incorporated with three carbon nanomaterials having different dimensionalities, carbon dots (C-dots, 0D), single-walled carbon nanotubes (1D), and reduced graphene oxide (2D), in an effort to create effective photocatalytic nanocomposites for chloramine-T removal from water. Microstructural analyses confirmed the formation of nanocomposites and revealed their chemistry and structure. Elemental mapping revealed a uniform distribution of elements throughout the nanocomposite matrix that was free of impurities. The spherical shape of the matrix particles (average diameter ~90 nm) and their conjugation with the carbon nanomaterials were confirmed. Nitrogen adsorption-desorption isotherms revealed that the nanocomposites were mesoporous but also contained macropores. The surface chemical compositions of the nanocomposites were investigated and showed a range of available binding energies. The kinetics of photocatalysis by the system were studied, and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) on the efficiency of chloramine-T degradation were also investigated. The nanocomposite loaded with 10% C-dots exhibited high UV-assisted photocatalytic activity for chloramine-T degradation (65% removal efficiency).
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza 16453, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt; Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Rajesh Kumar
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Keiichiro Maegawa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
9
|
Enhanced controllable degradation ability of magnetic imprinted photocatalyst via photoinduced surface imprinted technique for ciprofloxacin selectively degradation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ghasemzadeh MA, Elyasi Z, Monfared MRZ. Enhanced Removal of Methyl Violet Dye from Aqueous Solution by a Novel Co3O4@SiO2@TiO2-Ag Heterogeneous Semiconductor. Comb Chem High Throughput Screen 2021; 25:883-894. [PMID: 33645475 DOI: 10.2174/1386207324666210301090123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND This research introduces the application of a novel photocatalyst including Co3O@SiO2@TiO2-Ag nanocomposite with highly photocatalytic stability and core-shell structure for the removal of toxic methyl violet from aqueous solution. OBJECTIVE The removal of toxic dyes and organic contaminants from water is outstanding research area between scientists. Methyl violet as a toxic cationic pollutant has disruptive influence for humans. In this research, with a aim to remove to methyl violet from the wastewater we developed a new photocatalyst including Co3O4@SiO2@TiO2-Ag nanocomposite as a eco-friendly and low-cost nanostructure with high photocatalytic activity in order to reduce the risks of this pollutant from aqueous media. METHODS The Co3O4@SiO2@TiO2-Ag nanostructure was prepared via hydrothermal and sol-gel methods and the structure elucidation of the prepared photocatalyst was analyzed by different spectroscopy techniques including XRD, FT-IR, FE-SEM, TEM, VSM and EDX. RESULTS Photodegradation of methyl violet in the presence of different structures showed that Co3O4@SiO2@TiO2-Ag is superior photocatalytic activity (about 98% was decomposed after 40 min) compared to the previous shells and pure Co3O4 NPs. Loadings of SiO2@TiO2-Ag nanocomposite over the Co3O4 surface led to the reduction in the band gap energy of visible light and improvement in the photocatalytic activity of Methyl Violet dye for the aqueous phase decomposition. CONCLUSION The remarkable benefits of this nanocomposite are highly photocatalytic efficiency in the degradation of methyl violet (almost 100 % within 1 h), easy magnetic separation, low cost, and high chemical stability. The collected results demonstrated the rate of degradation is increased by increasing the irradiation time, while the rate of degradation is decreased by dye concentration.
Collapse
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, I. R. Iran Post Box: 37491-13191. Iran
| | - Zahar Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, I. R. Iran Post Box: 37491-13191. Iran
| | | |
Collapse
|
11
|
An CW, Liu T, Zhang DF, Yan JS. Superior Visible-Light Driven Photocatalyst of Ni-Doped CdFe2O4 for Environmental Pollutants Degradation. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420060014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Jaihindh DP, Manikandan A, Chueh YL, Fu YP. Deep Eutectic Solvent-Assisted Synthesis of Ternary Heterojunctions for the Oxygen Evolution Reaction and Photocatalysis. CHEMSUSCHEM 2020; 13:2726-2738. [PMID: 32103631 DOI: 10.1002/cssc.202000177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Hierarchical nano-/microstructured photocatalysts have drawn attention for enhanced photocatalytic performance. Deep eutectic solvents (DESs) have been used as a green sustainable media to act as both solvent and structure-inducing agent in the synthesis of hierarchical nanomaterials. In this work, the DESs-assisted synthesis of flower-structured BiOCl/BiVO4 (BOC/BVO) with g-C3 N4 (BOC/BVO/g-CN) ternary heterojunctions was achieved by using a simple wet-chemical method, providing good acidic and alkaline oxygen evolution reaction (OER) catalysts. BOC/BVO/g-CN-15 achieved an enhanced photocatalytic activity for OER with an overpotential of 570 mV in 1 m H2 SO4 and 220 mV in 1 m KOH electrolyte at a current density of 10 mA cm-2 with excellent stability and extraordinary durability of the catalyst. The ternary heterojunctions displayed extended lifetimes for photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which is helpful to enhance the photocatalytic OER. Furthermore, the photocatalytic performance of the ternary heterojunctions in aqueous solution was demonstrated through photocatalytic dye degradation of methyl orange (MO) as a model pollutant, resulting in 95 % degradation of 20 ppm of MO in 210 min under the irradiation of a 35 W Xe arc lamp. This work not only provides new insight into the design of catalysts by using green solvents but also into the design of highly efficient metal-free OER photocatalysts for applications in acidic and alkaline media.
Collapse
Affiliation(s)
- Dhayanantha Prabu Jaihindh
- Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Arumugam Manikandan
- Department of Materials Science and Engineering, National Tsing Hwa University, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hwa University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matter, National Tsing Hwa University, Hsinchu, 30013, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| |
Collapse
|
13
|
The effect of Ag nanoparticles on physical and photocatalytic properties of ZnFe2O4/SiO2 nanocomposite. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Yousaf M, Mushtaq N, Zhu B, Wang B, Akhtar MN, Noor A, Afzal M. Electrochemical properties of Ni0.4Zn0.6 Fe2O4 and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC). Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135349] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Xie E, Zheng L, Li X, Wang Y, Dou J, Ding A, Zhang D. One-step synthesis of magnetic-TiO2-nanocomposites with high iron oxide-composing ratio for photocatalysis of rhodamine 6G. PLoS One 2019; 14:e0221221. [PMID: 31425521 PMCID: PMC6699712 DOI: 10.1371/journal.pone.0221221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022] Open
Abstract
In the study, a facile one-step method for synthesizing magnetic-TiO2-nanophotocatalysts was developed. With the same composing ratio of 0.5 and 0.35 (Fe:Ti, mole:mole), we prepared two types of magnetic-TiO2-nanocomposites as one-step synthesized FexOy-composed TiO2 (FexOy/TiO2-0.5 and FexOy/TiO2-0.35) and two-step synthesized core-shell FexOy@TiO2 (FexOy@TiO2-0.5 and FexOy@TiO2-0.35), and tested their performance in rhodamine 6G (R6G) photodegradation. X-ray diffraction (XRD) analysis showed that FexOy@TiO2-0.5 has the smallest crystallite size (16.8 nm), followed by FexOy@TiO2-0.5 (18.4 nm), FexOy/TiO2-0.35 (21.0 nm) and FexOy/TiO2-0.5 (19.0 nm), and X-ray photoelectron spectroscopy (XPS) suggested the decreasing percentage of Fe3O4 from 52.1% to 36.7%-47.2% after Ti-deposition treatment. The saturated magnetisms followed the order: FexOy@TiO2-0.5 > FexOy@TiO2-0.35 > FexOy/TiO2-0.5 > FexOy/TiO2-0.35. R6G photodegradation followed the first order kinetics and was slightly influenced by pH but significantly affected by initial photocatalyst concentration. FexOy/TiO2-0.35 achieved the highest removal efficiency for R6G (92.5%), followed by FexOy@TiO2-0.35 (88.97%), FexOy@TiO2-0.5 (60.49%) and FexOy/TiO2-0.5 (48.06%). Additionally, all these magnetic-TiO2-nanocomposites had satisfied magnetic recoverability and exhibited laudable reusability after 5-times reuse, even achieving higher R6G removal efficiencies from 97.30% to 98.47%. Our one-step method took only 75 min for nanocomposite synthesis, 90 min less than conventional two-step method, showing its feasibility as a practical method for magnetic-TiO2-nanocomposite synthesis in industrial application.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, PR China
- College of Water Sciences, Beijing Normal University, Beijing, PR China
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, PR China
| | - Xinyang Li
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing, PR China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
17
|
Liao G, Fang J, Li Q, Li S, Xu Z, Fang B. Ag-Based nanocomposites: synthesis and applications in catalysis. NANOSCALE 2019; 11:7062-7096. [PMID: 30931457 DOI: 10.1039/c9nr01408j] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Collapse
Affiliation(s)
- Guangfu Liao
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong 523808, China.
| | | | | | | | | | | |
Collapse
|
18
|
Jaihindh DP, Thirumalraj B, Chen SM, Balasubramanian P, Fu YP. Facile synthesis of hierarchically nanostructured bismuth vanadate: An efficient photocatalyst for degradation and detection of hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:647-657. [PMID: 30654282 DOI: 10.1016/j.jhazmat.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Heterostructured nanomaterials can paid more significant attention in environmental safety for the detection and degradation/removal of hazardous toxic chemicals over a decay. Here, we report the preparation of hierarchically nanostructured shuriken like bismuth vanadate (BiVO4) as a bifunctional catalyst for photocatalytic degradation and electrochemical detection of highly toxic hexavalent chromium (Cr(VI)) using the green deep eutectic solvent reline, which allows morphology control in one of the less energy-intensive routes. The SEM results showed a good dispersion of BiVO4 catalyst and the HR-TEM revealed an average particle size of ca. 5-10 nm. As a result, the BiVO4 exhibited good photocatalytic activity under UV-light about 95% reduction of Cr(VI) to Cr(III) was observed in 160 min. The recyclability of BiVO4 catalyst exhibited an appreciable reusability and stability of the catalyst towards the photocatalytic reduction of Cr(VI). Also, the BiVO4-modified screen printed carbon electrode (BiVO4/SPCE) displayed an excellent electrochemical performance towards the electrochemical detection of Cr(VI). Besides, the BiVO4/SPCE demonstrated tremendous electrocatalytic activity, lower linear range (0.01-264.5 μM), detection limit (0.0035 μM) and good storage stability towards the detection of Cr(VI). Importantly, the BiVO4 modified electrode was also found to be a good recovery in water samples for practical applications.
Collapse
Affiliation(s)
- Dhayanantha Prabu Jaihindh
- Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sheng-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan.
| |
Collapse
|
19
|
Fabrication of magnetically recyclable ZrO2-TiO2/CoFe2O4 hollow core/shell photocatalysts: Improving photocatalytic efficiency under sunlight irradiation. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0241-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Huang J, Jing HX, Li N, Li LX, Jiao WZ. Fabrication of magnetically recyclable SnO2-TiO2/CoFe2O4 hollow core-shell photocatalyst: Improving photocatalytic efficiency under visible light irradiation. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Sohrabi S, Keshavarz Moraveji M, Iranshahi D. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: challenges and opportunities. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Microfluidics is an emerging branch of science that has significant applications in various fields. In this review paper, after a brief introduction to the concept of photocatalysis, nanoparticle preparation methods and film formation techniques have been studied. Nanoparticle synthesis in microfluidic systems and microreactor types for on-chip photocatalyst synthesis and challenges of nanoparticles handling in microsystems have been reviewed. To resolve particle polydispersity and microchannel clogging, a good suggestion can be the use of droplet-based microreactors. The configurative designs for the microfluidic reactor with immobilized photocatalysts, their applications, and their challenges have been comprehensively addressed. The three main challenges ahead the immobilized photocatalytic microfluidic reactors are optimal light distribution, prevention of the recombination of photogenerated electrons and holes, and improved mass transfer. Internal light-emitting diodes with a waveguide can resolve the number one challenge of photocatalysis application in optofluidic reactors, that is, light distribution.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Hafez Street , Tehran 1591634311 , Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Hafez Street , Tehran 1591634311 , Iran
| | - Davood Iranshahi
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Hafez Street , Tehran 1591634311 , Iran
| |
Collapse
|
22
|
Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalysts 2019. [DOI: 10.3390/catal9020122] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serious water pollution and the exhausting of fossil resources have become worldwide urgent issues yet to be solved. Solar energy driving photocatalysis processes based on semiconductor catalysts is considered to be the most promising technique for the remediation of wastewater. However, the relatively low photocatalytic efficiency remains a critical limitation for the practical use of the photocatalysts. To solve this problem, numerous strategies have been developed for the preparation of advanced photocatalysts. Particularly, incorporating a semiconductor with various functional components from atoms to individual semiconductors or metals to form a composite catalyst have become a facile approach for the design of high-efficiency catalysts. Herein, the recent progress in the development of novel photocatalysts for wastewater treatment via various methods in the sight of composite techniques are systematically discussed. Moreover, a brief summary of the current challenges and an outlook for the development of composite photocatalysts in the area of wastewater treatment are provided.
Collapse
|
23
|
Wysocka I, Kowalska E, Trzciński K, Łapiński M, Nowaczyk G, Zielińska-Jurek A. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles. NANOMATERIALS 2018; 8:nano8010028. [PMID: 29316667 PMCID: PMC5791115 DOI: 10.3390/nano8010028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/25/2022]
Abstract
The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), Mott-Schottky analysis and photoluminescence spectroscopy (PL). Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation). It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process.
Collapse
Affiliation(s)
- Izabela Wysocka
- Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo 001-0021, Japan.
| | - Konrad Trzciński
- Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Marcin Łapiński
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Grzegorz Nowaczyk
- NanoBioMedical Center, Adam Mickiewicz University, 61-614 Poznan, Poland.
| | | |
Collapse
|
24
|
Mehrizad A, Gharbani P. Novel ZnS/Carbon Nanofiber Photocatalyst for Degradation of Rhodamine 6G: Kinetics Tracking of Operational Parameters and Development of a Kinetics Model. Photochem Photobiol 2017; 93:1178-1186. [DOI: 10.1111/php.12795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Ali Mehrizad
- Department of Chemistry, Tabriz Branch; Islamic Azad University; Tabriz Iran
| | - Parvin Gharbani
- Department of Chemistry, Ahar Branch; Islamic Azad University; Ahar Iran
| |
Collapse
|