1
|
Wang L, Qian Y. A type I and II compatible vinyl-pyridine modified BODIPY dimer photosensitizer for photodynamic therapy in A-549 cells. Org Biomol Chem 2023; 21:7339-7350. [PMID: 37642553 DOI: 10.1039/d3ob01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this paper, the vinyl-pyridine group was used to modify the BODIPY dimer photosensitizer (T-BDP2) to obtain a VP-BDP2 photosensitizer. Compared with the T-BDP2 photosensitizer, the VP-BDP2 photosensitizer could work under pure water conditions, the singlet oxygen yield was increased from 9.38% to 22.2%, the charge transfer rate was increased from about 30 ps to about 10 ps, and the red emission was enhanced in fluorescence imaging. In addition, the VP-BDP2 photosensitizer could also generate the superoxide radical (O2˙-) under pure water conditions. The ROS generation mechanism of the VP-BDP2 photosensitizer was considered to be the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) mechanism, which was verified by fs-transient absorption spectra and theoretical calculation. In the photodynamic therapy of A-549 cells, the VP-BDP2 photosensitizers could generate singlet oxygen and superoxide radicals (O2˙-) under biological conditions, and showed high phototoxicity with the IC50 value at 12.1 μM under light at 525 nm. Additionally, the multiple dipolar configuration meant that the VP-BDP2 photosensitizer could be used in two-photon fluorescence zebrafish imaging under 800 nm excitation, which sets the stage for future two-photon photodynamic therapy.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Wang L, Qian Y. Modification of a SOCT-ISC type triphenylamine-BODIPY photosensitizer by a multipolar dendrimer design for photodynamic therapy and two-photon fluorescence imaging. Biomater Sci 2023; 11:1459-1469. [PMID: 36602169 DOI: 10.1039/d2bm01838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a series of multipolar triphenylamine-BODIPY photosensitizers T-BDPn (n = 1, 2, 3) was synthesized. Compared with T-BDP1 of D-A configuration, the multipolar T-BDP3 dendrimer have higher singlet oxygen efficiency (44%), better fluorescence quantum yield (7.45%), and could be used in the simulated photodynamic therapy in A-549 cells and two-photon fluorescence imaging in zebrafish. The theoretical calculation and fs-transient absorption spectra indicated that the reason of its higher singlet oxygen efficiency was that the multipolar T-BDP3 dendrimer could generate more nearly degenerate charge transfer (CT) states and triplet states, which could further increase the possibility of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) process. In the simulated photodynamic therapy of A-549 cells, T-BDP3 shows good cytocompatibility, great phototoxicity with its IC50 value of 3.17 μM, and could kill cancer cells effectively with the dosage of 5 μM under 10 min irradiation in the AO/EB double-staining experiment. In the fluorescence imaging of zebrafish, the experiment results indicate that T-BDP3 could generate superoxide radical (O2˙-) in the body of zebrafish and could be applied to the two-photon fluorescence imaging under 800 nm excitation. The above experiment results shown that the multipolar dendrimer design was an effective approach to improve the key parameters of SOCT-ISC-type BODIPY photosensitizer and was ready for further two-photon photodynamic therapy in organisms.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
3
|
Sheng W, Guo X, Tang B, Bu W, Zhang F, Hao E, Jiao L. Hybridization of triphenylamine to BODIPY dyes at the 3,5,8-positions: A facile strategy to construct near infra-red aggregation-induced emission luminogens with intramolecular charge transfer for cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121902. [PMID: 36208580 DOI: 10.1016/j.saa.2022.121902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A series of five BODIPY derivatives with triarylamine (TPA) moieties on their 3-, 5-, or 8-positions were reported, which showed wide-range fluorescence emissions across red and near infrared regions in their aggregation states. The influences of numbers and substituted positions of TPA groups on the optical and aggregation-induced emission (AIE) properties of these BODIPYs as well as organelle-specific imaging in live cells were investigated. The TPA groups installed at 3-/5-positions of BODIPY could effectively enlarge the conjugated system and red-shift the absorption and emission bands (λemmax up to 815 nm). In contrast, the TPA group linked to 8-position of BODIPY core has little contribution to decrease the HOMO-LUMO energy gap. Importantly, regardless the substitution positions of TPA groups, all these TPA-substituted BODIPYs (BTs) showed remarkable AIE performance and possessed high molar extinction absorption (up to ∼ 63000 M-1 cm-1), two-photon absorption (up to 171 GM at 870 nm), and large Stokes shifts. The BODIPY with one TPA group (BT1 and FBT1) showed lipid droplets-specific localization while BODIPY with two and three TPA groups (BT2, BT3 and FBT2) preferred to enrich in lysosomes. These BODIPYs all have been successfully used in tracking the dynamic behaviors of lipid droplets or lysosomes in living cells. Furthermore, BT1 and FBT1 can quantitatively detect the overexpression of lipid droplets, and BT3 has been successfully used to observe lysosomes behaviors of lipophagy process in living cells. This work systematically studied the influence of the number and position of TPA units on the optical properties and AIE-activities of BODIPYs, which not only enriched the BODIPY-based AIE NIR probes for organelle-specific imaging in live cells, but also provided a practical strategy for the effective construction of organic dyes with NIR AIE activity.
Collapse
Affiliation(s)
- Wanle Sheng
- Department of Chemistry, BengBu Medical College, Bengbu 233030, China.
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
4
|
Wang C, Qian Y. A water soluble carbazolyl-BODIPY photosensitizer with an orthogonal D-A structure for photodynamic therapy in living cells and zebrafish. Biomater Sci 2020; 8:830-836. [PMID: 31790094 DOI: 10.1039/c9bm01709g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel photosensitizer carbazolyl-BODIPY (Cz-BODIPY) with an orthogonal donor-acceptor structure was developed for photodynamic therapy (PDT). The photosensitizer Cz-BODIPY showed strong singlet oxygen sensitizing capability (ΦΔ = 0.68 in MeOH), excellent water solubility in dilute solution, and high photostability. The photosensitizer Cz-BODIPY exhibited negligible dark cytotoxicity and high phototoxicity (IC50 0.45 μM). Cz-BODIPY could induce cell apoptosis upon light illumination. Three cell states including living cells, apoptotic cells, and dead cells in the PDT process of Cz-BODIPY were determined via the Hoechst 33342/PI dual staining assays. The ROS (reactive oxygen species) generation in living cells during the PDT process of Cz-BODIPY was captured by the ROS detector, dihydroethidium (DHE). The photosensitizer Cz-BODIPY could be assimilated by zebrafish to generate ROS and diminish the integrity of zebrafish tissue upon light illumination. Tumor cell growth could be inhibited by Cz-BODIPY upon light illumination. The photosensitizer Cz-BODIPY displayed potential in real PDT application.
Collapse
Affiliation(s)
- Chengjun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | | |
Collapse
|
5
|
Huang C, Qian Y. CT-BODIPY with Donor-Acceptor Architecture: Red-AIE Property and Selective Interaction with BSA. ChemistrySelect 2019. [DOI: 10.1002/slct.201803843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chunmei Huang
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Ying Qian
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| |
Collapse
|
6
|
Wang L, Bai J, Qian Y. Synthesis of a triphenylamine BODIPY photosensitizer with D–A configuration and its application in intracellular simulated photodynamic therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj04166d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A D–A type triphenylamine BODIPY fluorescent dye with AIE characteristics makes progress in photodynamic therapy.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Jin Bai
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
7
|
Xia X, Qian Y, Shen B. Synthesis of a BODIPY disulfonate near-infrared fluorescence-enhanced probe with high selectivity to endogenous glutathione and two-photon fluorescent turn-on through thiol-induced S NAr substitution. J Mater Chem B 2018; 6:3023-3029. [PMID: 32254337 DOI: 10.1039/c7tb03321d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A BODIPY disulfonate BODIPY-diONs with two-photon fluorescent turn-on effect was developed as fluorescence probe for selective detection of glutathione over cysteine and homocysteine. BODIPY-diONs is weakly fluorescent due to the 2,4-dinitrobenzenesulfonyl quencher group. When GSH was added, a SNAr substitution reaction was triggered. The red emission of the BODIPY fluorophore at 675 nm was switched on, with a 27-fold emission enhancement in fluorescence intensity. The color of the solution changed from blue to green together with fluorescence appeared within 5 s. The absorbance and emission maxima of the probe BODIPY-diONs were achieved at 650 nm and 675 nm, respectively (quantum yield: 0.11). Interestingly, under the sapphire pulsed laser's 800 nm irradiation, in presence of GSH, the two-photon excited fluorescence (TPEF) of probe BODIPY-diONs was turned on, affording an OFF-ON response signal and a strong emission band at 682 nm. Furthermore, for detection of GSH, the chemodosimeter BODIPY-diONs exhibits high sensitivity and excellent anti-interference with low detection limit of 0.17 μM, and it works effectively within a wide pH range. Furthermore, the imaging studies proved that the probe BODIPY-diONs is suitable for the detection of GSH in complete physiological media.
Collapse
Affiliation(s)
- Xiang Xia
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China.
| | | | | |
Collapse
|
8
|
Dixit S, Mahaddalkar T, Lopus M, Agarwal N. Synthesis, photophysical studies of positional isomers of heteroaryl BODIPYs, and biological evaluation of Di-pyrrolyl BODIPY on human pancreatic cancer cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Yao S, Qian Y. Aggregation-Induced Emission, Functionalized Fluorescent Nanoparticles and Cells Imaging of a Water-Soluble Pyridyl-Naphthalimide Dendron. ChemistrySelect 2018. [DOI: 10.1002/slct.201702567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shankun Yao
- School of Chemistry and Chemical Engineering; Southeast University; No.2, Southeast University Road, Jiangning District Nanjing China
| | - Ying Qian
- School of Chemistry and Chemical Engineering; Southeast University; No.2, Southeast University Road, Jiangning District Nanjing China
| |
Collapse
|
10
|
Ziarani GM, Moradi R, Lashgari N, Kruger HG. BODIPY Dyes. METAL-FREE SYNTHETIC ORGANIC DYES 2018:95-107. [DOI: 10.1016/b978-0-12-815647-6.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
11
|
Shen B, Qian Y, Qi Z, Lu C, Cui Y. Near-Infrared Two-Photon Fluorescent Chemodosimeter Based on Rhodamine-BODIPY for Mercury Ion Fluorescence Imaging in Living Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baoxing Shen
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Ying Qian
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing China
| | - Zhengqing Qi
- Advanced Photonic Center; Southeast University; Nanjing China
| | - Changgui Lu
- Advanced Photonic Center; Southeast University; Nanjing China
| | - Yiping Cui
- Advanced Photonic Center; Southeast University; Nanjing China
| |
Collapse
|
12
|
BODIPY-Triphenylamine with conjugated pyridines and a quaternary pyridium salt: Synthesis, aggregation-induced red emission and interaction with bovine serum albumin. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|