1
|
Saga Y, Otsuka Y, Tanaka A, Masaoka Y, Hidaka T, Nagasawa Y. Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll a. J Phys Chem B 2021; 125:6830-6836. [PMID: 34139847 DOI: 10.1021/acs.jpcb.1c01592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excitation energy transfer (EET) in light-harvesting proteins is vital for photosynthetic activities. The pigment compositions and their organizations in these proteins are responsible for the EET functions. Thus, changing the pigment compositions in light-harvesting proteins contributes to a better understanding of EET mechanisms. In this study, we investigated the EET dynamics of two light-harvesting complex 2 (LH2) variants, in which nine B800 bacteriochlorophyll (BChl) a pigments were entirely or half converted to 3-acetyl chlorophyll (AcChl) a. The AcChl a pigments showed a Qy band, which was blue-shifted by 107 nm from B800 BChl a in the two variants. EET from AcChl a to B850 BChl a was observed in both fully oxidized and half-oxidized LH2 variants, but the EET rates were lower than that from B800 to B850 BChl a. EET from AcChl a to the co-present B800 was barely detected in the half-oxidized LH2. The preferential EET from AcChl a to B850 instead of B800 was rationalized by little spectral overlap of AcChl a with B800 BChl a and the pigment geometry in the protein. The EET rate from B800 to B850 BChl a in the half-oxidized LH2 was analogous to that in native LH2, indicating that partial oxidation of B800 did not disturb the EET channel from the residual B800 to B850.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuji Otsuka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuto Masaoka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tsubasa Hidaka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yutaka Nagasawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Saga Y, Yamashita M, Masaoka Y, Hidaka T, Imanishi M, Kimura Y, Nagasawa Y. Excitation Energy Transfer from Bacteriochlorophyll b in the B800 Site to B850 Bacteriochlorophyll a in Light-Harvesting Complex 2. J Phys Chem B 2021; 125:2009-2017. [PMID: 33605728 DOI: 10.1021/acs.jpcb.0c09605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control of the spectral overlap between energy donors and acceptors provides insight into excitation energy transfer (EET) mechanisms in photosynthetic light-harvesting proteins. Substitution of energy-donating B800 bacteriochlorophyll (BChl) a with other pigments in the light-harvesting complex 2 (LH2) of purple photosynthetic bacteria has been extensively performed; however, most studies on the B800 substitution have focused on the decrease in the spectral overlap integral with energy-accepting B850 BChl a by reconstitution of chlorophylls into the B800 site. Here, we reconstitute BChl b into the B800 site of the LH2 protein from Rhodoblastus acidophilus to increase the spectral overlap with B850 BChl a. BChl b in the B800 site had essentially the same hydrogen-bonding pattern as B800 BChl a, whereas it showed a red-shifted Qy absorption band at 831 nm. The EET rate from BChl b to B850 BChl a in the reconstituted LH2 was similar to that of native LH2 despite the red shift of the Qy band of the energy donor. These results demonstrate the importance of the contribution of the density of excitation states of the B850 circular assembly, which incorporates higher lying optically forbidden states, to intracomplex EET in LH2.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Madoka Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuto Masaoka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tsubasa Hidaka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Michie Imanishi
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yutaka Nagasawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Effects of palladium ions on light-harvesting complex 2 lacking B800 bacteriochlorophyll a. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Saga Y, Yamashita M, Imanishi M, Kimura Y, Masaoka Y, Hidaka T, Nagasawa Y. Reconstitution of 3-Acetyl Chlorophyll a into Light-Harvesting Complex 2 from the Purple Photosynthetic Bacterium Phaeospirillum molischianum. ACS OMEGA 2020; 5:6817-6825. [PMID: 32258917 PMCID: PMC7114761 DOI: 10.1021/acsomega.0c00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The manipulation of B800 bacteriochlorophyll (BChl) a in light-harvesting complex 2 (LH2) from the purple photosynthetic bacterium Phaeospirillum molischianum (molischianum-LH2) provides insight for understanding the energy transfer mechanism and the binding of cyclic tetrapyrroles in LH2 proteins since molischianum-LH2 is one of the two LH2 proteins whose atomic-resolution structures have been determined and is a representative of type-2 LH2 proteins. However, there is no report on the substitution of B800 BChl a in molischianum-LH2. We report the reconstitution of 3-acetyl chlorophyll (AcChl) a, which has a 17,18-dihydroporphyrin skeleton, to the B800 site in molischianum-LH2. The 3-acetyl group in AcChl a formed a hydrogen bond with β'-Thr23 in essentially the same manner as native B800 BChl a, but this hydrogen bond was weaker than that of B800 BChl a. This change can be rationalized by invoking a small distortion in the orientation of the 3-acetyl group in the B800 cavity by dehydrogenation in the B-ring from BChl a. The energy transfer from AcChl a in the B800 site to B850 BChl a was about 5-fold slower than that from native B800 BChl a by a decrease of the spectral overlap between energy-donating AcChl a and energy-accepting B850 BChl a.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Madoka Yamashita
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Michie Imanishi
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuto Masaoka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Tsubasa Hidaka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yutaka Nagasawa
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
5
|
Saga Y, Yamashita M, Nakagawa S. In situ Conversion of Chlorophyll b Reconstituted into Photosynthetic Protein LH2. CHEM LETT 2019. [DOI: 10.1246/cl.190545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Madoka Yamashita
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shiori Nakagawa
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Sci Rep 2019; 9:3636. [PMID: 30842503 PMCID: PMC6403449 DOI: 10.1038/s41598-019-40082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Engineering chlorophyll (Chl) pigments that are bound to photosynthetic light-harvesting proteins is one promising strategy to regulate spectral coverage for photon capture and to improve the photosynthetic efficiency of these proteins. Conversion from the bacteriochlorophyll (BChl) skeleton (7,8,17,18-tetrahydroporphyrin) to the Chl skeleton (17,18-dihydroporphyrin) produces the most drastic change of the spectral range of absorption by light-harvesting proteins. We demonstrated in situ selective oxidation of B800 BChl a in light-harvesting protein LH2 from a purple bacterium Rhodoblastus acidophilus by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. The newly formed pigment, 3-acetyl Chl a, interacted with the LH2 polypeptides in the same manner as native B800. B850 BChl a was not oxidized in this reaction. CD spectroscopy indicated that the B850 orientation and the content of the α-helices were unchanged by the B800 oxidation. The nonameric circular arrangement of the oxidized LH2 protein was visualized by AFM; its diameter was almost the same as that of native LH2. The in situ oxidation of B800 BChl a in LH2 protein with no structural change will be useful not only for manipulation of the photofunctional properties of photosynthetic pigment-protein complexes but also for understanding the substitution of BChl to Chl pigments in the evolution from bacterial to oxygenic photosynthesis.
Collapse
|
7
|
Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:209-223. [PMID: 30414933 PMCID: PMC6358721 DOI: 10.1016/j.bbabio.2018.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg-10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.
Collapse
|
8
|
Saga Y, Yamashita M, Imanishi M, Kimura Y. Reconstitution of Chlorophyll d into the Bacterial Photosynthetic Light-harvesting Protein LH2. CHEM LETT 2018. [DOI: 10.1246/cl.180483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Madoka Yamashita
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Michie Imanishi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
9
|
Saga Y, Hirota K, Matsui S, Asakawa H, Ishikita H, Saito K. Selective Removal of B800 Bacteriochlorophyll a from Light-Harvesting Complex 2 of the Purple Photosynthetic Bacterium Phaeospirillum molischianum. Biochemistry 2018; 57:3075-3083. [PMID: 29771536 DOI: 10.1021/acs.biochem.8b00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective removal of B800 bacteriochlorophyll (BChl) a from light-harvesting complex 2 (LH2) in purple photosynthetic bacteria is a clue about elucidation of the mechanism for the transfer of energy from these pigments to B850 BChl a and their roles in the LH2 protein structure. We demonstrated that the kinetics of the removal of B800 BChl a from two representative LH2 proteins derived from Phaeospirillum molischianum and Rhodoblastus acidophilus differed significantly, in contrast to the calculated binding enthalpy. These results may be interpreted as changes in the local structure near B800 BChl a with respect to the geometries of the original crystal structures upon removal of B800 BChl a. Despite the difficulty of removing B800 BChl a from molischianum-LH2, we prepared the molischianum-LH2 protein lacking B800 BChl a by combination of two detergents, n-dodecyl β-d-maltoside and n-octyl β-d-glucoside, under acidic conditions. Spectral and atomic force microscopy analyses indicated that the absence of B800 BChl a had little effect on the local structure in the vicinity of B850 BChl a and the circular arrangement in this protein. These results suggest that the hydrophobic domain near B850 BChl a is rigid and plays a major role in the structural formation of molischianum-LH2.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering , Kindai University , Higashi-Osaka, Osaka 577-8502 , Japan.,Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency , Kawaguchi , Saitama 332-0012 , Japan
| | - Keiya Hirota
- Department of Chemistry, Faculty of Science and Engineering , Kindai University , Higashi-Osaka, Osaka 577-8502 , Japan
| | - Sayaka Matsui
- Graduate School of Natural Science and Technology , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Hitoshi Asakawa
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency , Kawaguchi , Saitama 332-0012 , Japan.,Graduate School of Natural Science and Technology , Kanazawa University , Kanazawa 920-1192 , Japan.,Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry , The University of Tokyo , Bunkyo-ku, Tokyo 113-8654 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , Meguro-ku, Tokyo 153-8904 , Japan
| | - Keisuke Saito
- Department of Applied Chemistry , The University of Tokyo , Bunkyo-ku, Tokyo 113-8654 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , Meguro-ku, Tokyo 153-8904 , Japan
| |
Collapse
|
10
|
Saga Y, Miyagi K. Characterization of 3-Acetyl Chlorophyllaand 3-Acetyl ProtochlorophyllaAccommodated in the B800 Binding Sites of Photosynthetic Light-Harvesting Complex 2 in the Purple Photosynthetic BacteriumRhodoblastus acidophilus. Photochem Photobiol 2018; 94:698-704. [DOI: 10.1111/php.12919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry; Faculty of Science and Engineering; Kindai University; Higashi-Osaka, Osaka Japan
- Precursory Research for Embryonic Science and Technology; Japan Science and Technology Agency; Kawaguchi Saitama Japan
| | - Kanji Miyagi
- Department of Chemistry; Faculty of Science and Engineering; Kindai University; Higashi-Osaka, Osaka Japan
| |
Collapse
|