1
|
Wang Y, Yu B, Cai M, Li Z, Yang L, Zhang H, Liu W, Wang M. Multifunctional long afterglow nanoparticles with enhanced photothermal effects for in vivo imaging and tumor-targeting therapy. Talanta 2024; 279:126629. [PMID: 39106649 DOI: 10.1016/j.talanta.2024.126629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Considering the excellent properties such as deep tissue penetration, high signal-to-noise ratio, and in-situ recharge and reactivation, near-infrared luminescence long afterglow nanoparticles show considerable promise for biological application, especially in multifunctional imaging, targeting, and synergistic therapeutic. In this paper, Zn3Ga4GeO11: 0.1 % Cr3+, 1 % Yb3+, 0.1 % Tm3+@Ag-FA (ZGGO@Ag-FA, ZGA-FA) nanoparticles were synthesized by in-situ growth of Ag nanoparticles on the surface of long afterglow nanoparticles, and further modified with folic acid. Through precise adjustments, the luminescent properties of ZnGa2O4 were enhanced and notably boosted the photothermal effect of Ag by leveraging the upconversion emission of ZGGO, with a photothermal conversion efficiency reaching about 59.9 %. The ZGA-FA nanoparticles are ultra-small, measuring less than 50 nm. The modification with folic acid provides the ZGA-FA nanoparticles with excellent tumor-targeting capabilities, demonstrating effective enrichment and retention in tumor tissues, thus enabling long-term imaging and therapy through in vivo re-excitation. Due to its stable photothermal effect, outstanding near-infrared (NIR) afterglow imaging, and red-light charged characteristics, combined with effective tumor-targeting abilities, the therapeutic strategy proposed by this study has significant potential for clinical applications.
Collapse
Affiliation(s)
- Yunjian Wang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Yu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China; College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Mingqin Cai
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhihui Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Lu Yang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, PR China
| | - Hongbi Zhang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Weisheng Liu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Oudjedi F, Lee SS, Paliouras M, Trifiro M, Kirk AG. Enhancing in vitro photothermal therapy using plasmonic gold nanorod decorated multiwalled carbon nanotubes. BIOMEDICAL OPTICS EXPRESS 2023; 14:6629-6643. [PMID: 38420328 PMCID: PMC10898561 DOI: 10.1364/boe.504746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that selectively heats malignant cells while sparing healthy cells. Here, the light-to-heat conversion efficiency of multiwalled carbon nanotubes (MWCNTs) within the near-infrared biological transmission window is enhanced by decorating them with plasmonic gold nanorods (GNRs). The results reveal a significant photothermal enhancement of hybrid MWCNTs-GNRs compared to bare MWCNTs, displaying a 4.9 enhancement factor per unit mass. The enhanced plasmonic PTT properties of MWCNTs-GNRs are also investigated in vitro using PC3 prostate cancer cell lines, demonstrating a potent ablation efficiency. These findings advance innovative hybrid plasmonic nanostructures for clinical applications.
Collapse
Affiliation(s)
- Fatma Oudjedi
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Seung Soo Lee
- Lady Davis Institute for Medical Research - Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Guzzo Nano Research Corp, Terrebonne, QC, Canada
| | - Mark Trifiro
- Lady Davis Institute for Medical Research - Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Andrew G. Kirk
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Wang Y, Wang H, Deng J, Pan Y, Zheng Z, Ding X. Isoindigo-Based Dual-Acceptor Conjugated Polymers Incorporated Conjugation Length and Intramolecular Charge Transfer for High-Efficient Photothermal Conversion. Macromol Rapid Commun 2023; 44:e2300244. [PMID: 37465937 DOI: 10.1002/marc.202300244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Photothermal tumor therapy (PTT) and photoacoustic imaging (PA) have emerged as promising noninvasive diagnostic and therapeutic approaches for cancer treatment. However, the development of efficient PTT agents with high photostability and strong near-infrared (NIR) absorption remains challenging. This study synthesizes three isoindigo-based dual-acceptor conjugated polymers (CPs) (P-IIG-TPD, P-IIG-DPP, and P-IIG-EDOT-BT) via a green and nontoxic direct arylation polymerization (DArP) method and characterizes their optical, electrochemical, and NIR photothermal conversion properties. By incorporating two acceptors into the backbone, the resulting polymers exhibit enhanced photothermal conversion efficiency (PCE) due to improved synergy among conjugation length, planarity, and intramolecular charge transfer (ICT). The nanoparticles (NPs) of P-IIG-EDOT-BT and P-IIG-DPP have a uniform size distribution around 140 nm and exhibit remarkable NIR absorption at 808 nm. In addition, P-IIG-EDOT-BT and P-IIG-DPP NPs exhibit high PCEs of 62% and 78%, respectively. This study promotes the molecular design of CPs as NIR photothermal conversion materials and provides guidance for the development of novel dual-acceptor CPs for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongsen Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinni Deng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Xihua University, Chengdu, 610041, China
| | - Yi Pan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
4
|
Yan BY, Cao ZK, Hui C, Sun TC, Xu L, Ramakrishna S, Yang M, Long YZ, Zhang J. MXene@Hydrogel composite nanofibers with the photo-stimulus response and optical monitoring functions for on-demand drug release. J Colloid Interface Sci 2023; 648:963-971. [PMID: 37331077 DOI: 10.1016/j.jcis.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The photo-stimulus response has the advantage of non-invasiveness, which could be used to control the "on" and "off" of drug release achieving on-demand release. Herein, we design a heating electrospray during electrospinning to prepare photo-stimulus response composite nanofibers consisting of MXene@Hydrogel. This heating electrospray enables to spray MXene@Hydrogel during the electrospinning process, and the hydrogel is uniformly distributed which cannot be achieved by the traditional soaking method. In addition, this heating electrospray can also overcome the difficulty that hydrogels are hard to be uniformly distributed in the inner fiber membrane.The "on" and "off" state of drug release could be controlled by light. Not only near infrared (NIR) light but also sunlight could trigger the drug release, which could benefit outdoor use when cannot find NIR light. Evidence by hydrogen bond has been formed between MXene and Hydrogel, the mechanical property of MXene@Hydrogel composite nanofibers is significantly enhanced, which is conducive to the application of human joints and other parts that need to move. These nanofibers also possess fluorescence property, which is further used to real-time monitor the in-vivo drug release. No matter the fast or slow release, this nanofiber can achieve sensitive detection, which is superior to the current absorbance spectrum method.
Collapse
Affiliation(s)
- Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Min Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| |
Collapse
|
5
|
Neelgund GM, Aguilar SF, Kurkuri MD, Rodrigues DF, Ray RL. Elevated Adsorption of Lead and Arsenic over Silver Nanoparticles Deposited on Poly(amidoamine) Grafted Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3852. [PMID: 36364628 PMCID: PMC9654323 DOI: 10.3390/nano12213852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
An efficient adsorbent, CNTs-PAMAM-Ag, was prepared by grafting fourth-generation aromatic poly(amidoamine) (PAMAM) to carbon nanotubes (CNTs) and successive deposition of Ag nanoparticles. The FT-IR, XRD, TEM and XPS results confirmed the successful grafting of PAMAM onto CNTs and deposition of Ag nanoparticles. The absorption efficiency of CNTs-PAMAM-Ag was evaluated by estimating the adsorption of two toxic contaminants in water, viz., Pb(II) and As(III). Using CNTs-PAMAM-Ag, about 99 and 76% of Pb(II) and As(III) adsorption, respectively, were attained within 15 min. The controlling mechanisms for Pb(II) and As(III) adsorption dynamics were revealed by applying pseudo-first and second-order kinetic models. The pseudo-second-order kinetic model followed the adsorption of Pb(II) and As(III). Therefore, the incidence of chemisorption through sharing or exchanging electrons between Pb(II) or As(III) ions and CNTs-PAMAM-Ag could be the rate-controlling step in the adsorption process. Further, the Weber-Morris intraparticle pore diffusion model was employed to find the reaction pathways and the rate-controlling step in the adsorption. It revealed that intraparticle diffusion was not a rate-controlling step in the adsorption of Pb(II) and As(III); instead, it was controlled by both intraparticle diffusion and the boundary layer effect. The adsorption equilibrium was evaluated using the Langmuir, Freundlich, and Temkin isotherm models. The kinetic data of Pb(II) and As(III) adsorption was adequately fitted to the Langmuir isotherm model compared to the Freundlich and Temkin models.
Collapse
Affiliation(s)
- Gururaj M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanjuana F. Aguilar
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Ram L. Ray
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
6
|
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nisha Babu
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Shaik Abdul Rahaman
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Athira Maria John
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | | |
Collapse
|
7
|
Neelgund GM, Oki A, Bandara S, Carson L. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. J Mater Chem B 2021; 9:1792-1803. [PMID: 33393530 DOI: 10.1039/d0tb02366c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we present the rational synthesis of a multimode photothermal agent, NGO-FA-CuS, for the advancement of photothermal therapy of cancer. The hierarchical architecture created in NGO-FA-CuS was attained by the covalent conjugation of folic acid (FA) to nanographene oxide (NGO) through amide bonding, followed by the hydrothermal deposition of CuS nanoflowers. In this approach, instead of mere mixing or deposition, FA was covalently bonded to NGO, which helped in retaining their intrinsic properties after binding and allowed to access them in the resulting hybrid nanostructure. In this specifically designed photothermal agent, NGO-FA-CuS, each component has an explicit task, i.e., NGO, FA and CuS act as the quencher, cancer cell-targeting moiety and photothermal transduction agent, respectively. Prior to the grafting of FA molecules and the deposition of CuS nanoflowers, sulfonic acid groups were introduced into NGO to provide stability under physiological conditions. Under irradiation using a 980 nm laser, NGO-FA-CuS was able to attain a temperature of 63.1 °C within 5 min, which is far beyond the survival temperature for cancer cells. Therefore, the resulting temperature recorded for NGO-FA-CuS was sufficient to induce hyperthermia in cancer cells to cause their death. When coming into contact with cancer cells, NGO-FA-CuS can cause a rapid increase in the temperature of their nucleus, destroy the genetic substances, and ultimately lead to exhaustive apoptosis under illumination using a near-infrared (NIR) laser. An excellent photothermal efficiency of 46.2% under illumination using a 980 nm laser and outstanding cytotoxicity against HeLa, SKOV3 and KB cells were attained with NGO-FA-CuS. Moreover, NGO-FA-CuS displays exceptional persistent photo-stability without photo-corrosiveness. The photothermal effect of NGO-FA-CuS was found to be dependent on its concentration and the power density of the laser source. It was found that its cytotoxicity toward cancer cells was enhanced with an increase in the concentration of NGO-FA-CuS and the incubation period.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Aderemi Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Subhani Bandara
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
8
|
Dhanalekshmi KI, Sangeetha K, Magesan P, Johnson J, Zhang X, Jayamoorthy K. Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. J Biomol Struct Dyn 2020; 40:4766-4773. [PMID: 33300461 DOI: 10.1080/07391102.2020.1858965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The utilization of photodynamic therapy (PDT) has been rapidly increasing due to its advantage as an effective treatment modality for cancer. The organic photosensitizers employed for PDT have some disadvantages, including high toxicity, non-selectivity toward tumors and poor absorption of light. The low light penetration into the tumor sites resulting from low wavelength of absorption and long-term skin photosensitivity. Hence, the attention toward non-toxic inorganic photosensitizers like noble metal nanoparticles (NPs) has been increasing nowadays. In bioscience, NPs are replacing organic dyes since they have photostability and non-toxicity. Generally, nanomaterials can easily form compounds with other substances as well as organic materials and the modified NPs surface enhances the chemical activity. Among the metal NPs, noble metals, especially gold and silver are attractive because of their size and shape-dependent unique optoelectronic properties. The coating of inorganic/organic materials on top of the noble metal makes the NPs bio-compatible and less toxic. Furthermore, Ag- and Au-based inorganic/organic complex NPs could offer a new possibility because of their unique structures. Meanwhile, the coating of inorganic/organic complex NPs protects the noble metals and stabilizes them against chemical corrosion and enhances the production of reactive oxygen species. Thus, in this review, we have highlighted the role of Ag- and Au-based inorganic/organic hybrid nano-photosensitizers in photodynamic therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K I Dhanalekshmi
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - K Sangeetha
- Department of IBT, Bharath Institute of Higher Education & Research, Bharath University, Chennai, Tamil Nadu, India
| | - P Magesan
- Department of Chemistry, Bharath Institute of Higher Education & Research, Bharath University, Chennai, Tamil Nadu, India
| | - Jijo Johnson
- Department of Chemistry, Santhom Malankara Arts and Science College, Edanji, Thiruvananthapuram, Kerala, India
| | - Xiang Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - K Jayamoorthy
- Department of Chemistry, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 2020; 328:251-262. [DOI: 10.1016/j.jconrel.2020.08.055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
10
|
Neelgund GM, Oki A. Contribution of Polylactic Acid and Pd Nanoparticles in the Enhanced Photothermal Effect of Carbon Nanotubes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gururaj M. Neelgund
- Department of Chemistry Prairie View A&M University Prairie View, TX 77446 United States
| | - Aderemi Oki
- Department of Chemistry Prairie View A&M University Prairie View, TX 77446 United States
| |
Collapse
|
11
|
Tengsuthiwat J, Sanjay MR, Siengchin S, Pruncu CI. 3D-MID Technology for Surface Modification of Polymer-Based Composites: A Comprehensive Review. Polymers (Basel) 2020; 12:E1408. [PMID: 32586057 PMCID: PMC7362174 DOI: 10.3390/polym12061408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional molded interconnected device (3D-MID) has received considerable attention because of the growing demand for greater functionality and miniaturization of electronic parts. Polymer based composite are the primary choice to be used as substrate. These materials enable flexibility in production from macro to micro-MID products, high fracture toughness when subjected to mechanical loading, and they are lightweight. This survey proposes a detailed review of different types of 3D-MID modules, also presents the requirement criteria for manufacture a polymer substrate and the main surface modification techniques used to enhance the polymer substrate. The findings presented here allow to fundamentally understand the concept of 3D-MID, which can be used to manufacture a novel polymer composite substrate.
Collapse
Affiliation(s)
- Jiratti Tengsuthiwat
- Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s of University Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Mavinkere Rangappa Sanjay
- Natural Composites Research Group Lab, King Mongkut’s of University Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Suchart Siengchin
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Catalin I. Pruncu
- Mechanical Engineering Department, University of Birmingham, Birmingham B15 2TT, UK
- Mechanical Engineering, Imperial College London, Exhibition Rd., London SW7 2AZ, UK
| |
Collapse
|
12
|
Scollo F, Seggio M, Torrisi RL, Bua RO, Zimbone M, Contino A, Maccarrone G. New fluorescent-labelled nanoparticles: synthesis, characterization and interactions with cysteine and homocysteine to evaluate their stability in aqueous solution. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Ultrafast Photonic PCR Based on Photothermal Nanomaterials. Trends Biotechnol 2020; 38:637-649. [PMID: 31918858 DOI: 10.1016/j.tibtech.2019.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Over the past few decades, PCR has been the gold standard for detecting nucleic acids (NAs) in various biomedical fields. However, there are several limitations associated with conventional PCR, such as complicated operation, need for bulky equipment, and, in particular, long thermocycling time. Emerging nanomaterials with photothermal effects have shown great potential for developing a new generation of PCR: ultrafast photonic PCR. Here, we review recent applications of photothermal nanomaterials in ultrafast photonic PCR. First, we introduce emerging photothermal nanomaterials and their light-to-heat energy conversion process in photonic PCR. We then review different photothermal nanomaterial-based photonic PCRs and compare their merits and drawbacks. Finally, we summarize existing challenges with photonic PCR and hypothesize its promising future research directions.
Collapse
|
14
|
Neelgund G, Oki A. Cobalt Phthalocyanine-Sensitized Graphene-ZnO Composite: An Efficient Near-Infrared-Active Photothermal Agent. ACS OMEGA 2019; 4:5696-5704. [PMID: 30949619 PMCID: PMC6441945 DOI: 10.1021/acsomega.8b03222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/05/2019] [Indexed: 05/07/2023]
Abstract
Herein, a promising near-infrared-responsive photothermal agent was designed by anchoring of rice grain-shaped ZnO particles over graphene (GR) nanosheets and subsequent sensitization with cobalt phthalocyanine (CoPc). Thus, produced GR-ZnO-CoPc was able to attain the temperature of 68 °C by irradiating to 980 nm laser for 7 min, which is extremely higher than the endurance temperature of cancer cells. The linear fashioned progression in the photothermal effect of GR nanosheets was conquered by immobilization of ZnO particles and successive sensitization with CoPc. The excellence found in the photothermal effect of GR-ZnO-CoPc was verified by estimation of its photothermal conversion efficiency. The photothermal conversion efficiency assessed for GR-ZnO-CoPc was higher than those for the popular gold- and CuS-based photothermal agents. In addition, it possessed significant stability against photobleaching and structural rupture. It was found that the photothermal effect of GR-ZnO-CoPc is proportional to its concentration. However, by replacement of a 980 nm laser system with 808 nm, the photothermal effect of GR-ZnO-CoPc was reduced, which could be due to lower absorption of GR-ZnO-CoPc at 808 nm compared to 980 nm. On account of its significance and important properties, GR-ZnO-CoPc could be an interesting photothermal agent to employ in future photothermal therapy for cancer.
Collapse
Affiliation(s)
- Gururaj
M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, United States
| | - Aderemi Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, United States
| |
Collapse
|