1
|
Ren H, Qi F, Zhao Y, Labidi A, Miao Z. Synthesis, Crystal Structure and Antifungal Activity of ( E)-1-(4-Methylbenzylidene)-4-(3-Isopropylphenyl) Thiosemicarbazone: Quantum Chemical and Experimental Studies. Molecules 2024; 29:4702. [PMID: 39407629 PMCID: PMC11477955 DOI: 10.3390/molecules29194702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
A novel (E)-1-(4-methylbenzylidene)-4-(3-isopropylphenyl) thiosemicarbazone was synthesized in a one-pot four-step synthetic route. Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonances (NMR), single-crystal X-ray diffraction, and UV-visible absorption spectroscopy were utilized to confirm the successful preparation of the title compound. Single-crystal data indicated that the intramolecular hydrogen bond N(3)-H(3)···N(1) and intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) existed in the crystal structure and packing of the title compound. Besides the covalent interaction, the non-covalent weak intramolecular hydrogen bond N(3)-H(3)···N(1) discussed by atoms in molecules (AIM) theory also functioned in maintaining the title compound's crystal structure. The strong intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) discussed by Hirshfeld surface analysis played a major role in maintaining the title compound's crystal packing. The local maximum and minimum electrostatic potential of the title compound was predicted by electrostatic potential (ESP) analysis. The UV-visible spectra and HOMO-LUMO analysis revealed that the title compound has a low ΔEHOMO-LUMO energy gap (3.86 eV), which implied its high chemical reactivity due to the easy occurrence of charge transfer interactions within the molecule. Molecular docking and in vitro antifungal assays evidenced that its antifungal activity is comparable to the reported pyrimethanil, indicating its usage as a potential candidate for future antifungal drugs.
Collapse
Affiliation(s)
- Haitao Ren
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| | - Fan Qi
- State Key Laboratory of Medicinal Chemical, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Zongcheng Miao
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Sun Y, Mu H, Wang Y, Gao J, Zhang Y, Li H, Cai J. Photophysical Properties of ( E)-1-(4-(Diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide Compound and Its Triple Fluorescence Emission Mechanism: A Theoretical Perspective. J Phys Chem A 2024; 128:2092-2102. [PMID: 38466934 DOI: 10.1021/acs.jpca.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In view of the application prospects in biomedicine of (E)-1-(4-(diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), the behavior of excited-state dynamics and photophysical properties were studied using the density functional theory/time-dependent density functional theory method. A series of studies indicated that the intramolecular hydrogen-bond (IHB) intensity of DAHTS was enhanced after photoexcitation. This was conducive to promoting the excited-state intramolecular proton-transfer (ESIPT) process. Combining the analysis of the IHB and hole-electron, it revealed that the molecule underwent both the ESIPT process and the twisted charge-transfer (TICT) process. Relying on exploration of the potential energy surface, it was proposed that the different competitive mechanisms between the ESIPT and TICT processes were regulated by solvent polarity. In acetonitrile (ACN) solvent, the ESIPT process occurred first, and the TICT process occurred later. In contrast, in the CYH solvent, the molecule first underwent the TICT process and then the ESIPT process. Furthermore, we raised the possibility that the TICT behavior was the cause of weak fluorescence emission for the DAHTS in CYH and ACN solvents. By the dimer correlation analysis, the corresponding components of triple fluorescence emission were clearly assigned, corresponding to the monomer, dimer, and ESIPT isomer in turn. Our work precisely elucidated the photophysical mechanism of DAHTS and the attribution of the triple fluorescence emission components, which provided valuable guidance for the development and regulation of bioactive fluorescence probes with multiband and multicolor emission characteristics.
Collapse
Affiliation(s)
- Yuhang Sun
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongyan Mu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yang Wang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiaan Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yifu Zhang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jixing Cai
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
3
|
Bis naphthalene derived dual functional chemosensor: Specific signalling for Al3+ and Fe3+ ions with on-the-spot detection, bio-imaging, and logic gate applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Umredkar PY, Tangde VM, Khaty NT, Ganorkar KS, Dhondge SS. Effect of aqueous solutions of KCl, MgCl2, Dextrose and Urea on solvation behavior of aqueous myo-Inositol. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Ganorkar K, Samanta A, Mukherjee S, Joshi R, Gupta S, Sarkar A, Ghosh SK. Switching of the Polarity-Sensitive Aggregation Pattern of a Thiosemicarbazone-Based Anticancer Luminophore and Its Involvement in Cellular Apoptosis of the Human Lung Cancer Cell Line. J Phys Chem B 2023; 127:104-120. [PMID: 36594702 DOI: 10.1021/acs.jpcb.2c06410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elucidation of the photophysical and biochemical properties of small molecules can facilitate their applications as prospective therapeutic imaging (theragnostic) agents. Herein, we demonstrate the luminescence behavior of a strategically designed potential therapeutic thiosemicarbazone derivative, (E)-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), accompanied by the illustration of its solvation and solvation dynamics using spectroscopic techniques and exploring its promising antitumor activities by adopting the necessary biochemical assays. Solvent-dependent photophysical properties, namely UV-vis absorption, fluorescence emission, and excitation profiles, concentration-dependent studies, and time-resolved fluorescence decays, serve as footprints to explain the existence of DAHTS monomers, its excited-state intramolecular proton transfer (ESIPT) product, and dimeric and aggregated forms. The emission intensity progressively intensifies with increasing polarity and proticity of the solvents up to MeOH, but in water, a sudden dip is seen. Solvent polarity and H-bonding modulate the fluorescence behavior of the primary emission peak and significantly influence the formation of the dimer and DAHTS aggregates. The designed luminophore (DAHTS) exhibits significant antiproliferative activity against the human lung cancer (A549) cell lines with inhibitory concentrations (IC50) of 16.88 and 11.92 μM for 24 and 48 h, respectively. DAHTS effectively reduces the cell viability and induces cytotoxicity with extensive morphological changes in A549 cells in the form of spikes when compared to the normal HEK cell lines. More importantly, it increases the p53 expression at the mRNA level that consolidates its potential therapeutic activity. The effect of DAHTS on apoptotic pathways against the A549 cell line has been investigated to determine its probable mechanism of cell death. Thus, the all-inclusive understanding of the photophysical properties and the necessary biochemical assays put forward important steps toward tailoring the thiosemicarbazone core structure for favorable cancer theragnostic applications in academic and pharmaceutical research.
Collapse
Affiliation(s)
- Kapil Ganorkar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra440010, India
| | - Angela Samanta
- CMBL, Department of Biological Sciences, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa403726, India
| | - Soham Mukherjee
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra440010, India.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Ritika Joshi
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra431 203, India
| | - Smruti Gupta
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra440010, India
| | - Angshuman Sarkar
- CMBL, Department of Biological Sciences, BITS-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa403726, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra440010, India
| |
Collapse
|
6
|
Cryptic solvation dynamics of potential antineoplastic Azapodophyllotoxin: Short and long range charge transfer and distinct H-bonding motifs demystify its swinging emissive behaviour. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Das A, De S, Das G. Naphthyl-functionalized ninhydrin-derived receptor for ‘CHEF’-based sequential sensing of Al(III) and PPi: Prospective chemosensing applications under physiological conditions. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Ganorkar K, Mukherjee S, Singh P, Ghosh SK. Stabilization of a potential anticancer thiosemicarbazone derivative in Sudlow site I of human serum albumin: In vitro spectroscopy coupled with molecular dynamics simulation. Biophys Chem 2021; 269:106509. [PMID: 33302053 DOI: 10.1016/j.bpc.2020.106509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
Human Serum Albumin (HSA) is the most important protein in human blood plasma and can acts as a major transporting agent for various drug molecules with flexible binding interaction. To elucidate the interaction of a newly designed potential anticancer thiosemicarbazone based luminophore (E)-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethyl-thiosemicarbazide (DAHTS) with HSA under physiological condition, in vitro optical spectroscopic experiments viz UV-Vis absorption, steady state fluorescence, fluroscence anisotropy, time resolved fluorscence (TRF) and cicular dichroism (CD) spectroscopy have been scrutinised. The experimental findings have been corroborated with in silico molecular docking analysis and Molecular Dynamics (MD) simulation. The spectroscopic results demonstrated that the conventionally anion-favouring Sudlow site I of HSA copiously adapt neutral DAHTS molecule with moderate binding affinity. The mean fluorescence lifetime of the sole tryptophan (Trp-214) present in the macromolecule experiences an appreciable diminution with an increase in concentration of the synthesized molecule. DAHTS localize itself close to Trp-214 within subdomain IIA (Sudlow site I) and surrounded by multiple hydrophobic amino acid residues (Val-235, Val-231, Ala-229, Phe-228, Val-325, Phe-326, Leu-327, Met-329, Phe-330, Leu-331, Tyr-332, Leu-346, Leu-347, Val-482, Leu-349, Ala-350, Ala-210, Trp-214, Ala- 213 and Val-216) in HSA. The distinct fluorescence lifetime, diverse pathways and changing rate of population indicates that the rotamerisation of Trp-214 residue is controlled by the guest molecule. Sudlow site I of HSA behaves flexibly and induces an allosteric modulation in the macromolecule resulting a minor deformation in the protein secondary structure as observed in CD (observed 11% change of α-helix content) as well as in MD simulation. The integrated multi-spectroscopic research described herein provides several important information about the binding interaction of a thiosemicarbazone Schiff base with HSA, which can be very significant for thiosemicarbazone based drug designing for academia as well as industry.
Collapse
Affiliation(s)
- Kapil Ganorkar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Soham Mukherjee
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Piyush Singh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India.
| |
Collapse
|
9
|
Das B, Chakraborty A, Chakraborty S. Experimental and theoretical investigation of ground state intramolecular proton transfer (GSIPT) in salicylideneaniline Schiff base derivatives in polar protic medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117443. [PMID: 31677426 DOI: 10.1016/j.saa.2019.117443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Ground state intramolecular proton transfer process has been comprehensively investigated in three salicylideneaniline Schiff base derivatives (SB1, SB2, and SB3) using experimental and theoretical methods. It has been confirmed that all the three Schiff base molecules in the ground electronic state exist in the enol form in non-polar and polar aprotic solvents. Keto form is being populated by the polar protic solvent through ground state intramolecular proton transfer (GSIPT) process. Ground state equilibrium between the enol and keto tautomers for SB1 and SB3 is mainly governed by the proton donating ability of the solvent. Ground state equilibria between the enol and keto tautomers of SB2 which is a positional isomer of SB3 is governed by the polarity and proton donating ability of the solvents. Excited state intramolecular proton transfer (ESIPT) process is also evidenced in all the three Schiff base molecules. Theoretical calculations at the B3LYP/cc-pVDZ level in the gas phase and in different solvents using polarisable continuum model (PCM) have failed to establish the GSIPT process. Microsolvation of individual enol and keto conformers has been investigated considering upto three solvent molecules. The energetics of the individual conformers together with the corresponding transition state have been calculated. It has been confirmed that the keto conformer is more stable compared to the enol conformer in microsolvated cluster of three methanol molecules. Lowering of activation energy for the enol to keto tautomerisation in the presence of methanol also supports the experimental observation for GSIPT process. TDDFT/B3LYP/cc-pVDZ single point calculations for microsolvated clusters of enol and keto form of the Schiff base molecules exhibit an excellent agreement with the experimentally obtained absorption spectra. Difference in spectral nature of the Schiff base molecules has been explained using natural bond orbital (NBO) analysis. Quantum theory of atoms in molecules (QTAIM) has also been utilised to understand the GSIPT process in detail.
Collapse
Affiliation(s)
- Bijoya Das
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India
| | - Amrita Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India
| | - Shamik Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India.
| |
Collapse
|
10
|
Kumar A, Bawa S, Ganorkar K, Ghosh SK, Bandyopadhyay A. Synthesis and Characterization of Acid-Responsive Luminescent Fe(II) Metallopolymers of Rigid and Flexible Backbone N-Donor Multidentate Conjugated Ligands. Inorg Chem 2020; 59:1746-1757. [DOI: 10.1021/acs.inorgchem.9b02985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anil Kumar
- Department of Polymer & Process Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 247001, India
| | - Shubham Bawa
- Department of Polymer & Process Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 247001, India
| | - Kapil Ganorkar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Anasuya Bandyopadhyay
- Department of Polymer & Process Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 247001, India
| |
Collapse
|
11
|
Zhu Y, Gong X, Li Z, Zhao X, Liu Z, Cao D, Guan R. A simple turn-on ESIPT and PET-based fluorescent probe for detection of Al 3+ in real-water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:202-205. [PMID: 31048249 DOI: 10.1016/j.saa.2019.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Aluminum is known as the most ubiquitous metal in earth's crust but its excessive exposure will cause damage to environment and health of the organism. Here, a turn-on Schiff base fluorescence probe STH based on excited state intramolecular proton transfer and photoelectron transfer processes for Al3+ detection with fast response rate (within minutes), low detection limit (4.26×10-8M), high selectivity and reasonable pH application range (5.0-8.0) was developed. Fluorescence titration experiments show that probe STH has an excellent linear relationship (R2=0.9694) with Al3+ concentration and could be applied to quantitatively recognize Al3+ in real-water samples. Based on Job's plot and in situ mass spectra, two STH molecules will complex with Al3+ to form 2:1 complexation with oxygen atoms of hydroxyl and carbonyl groups and nitrogen atom of CN bond participating in coordination.
Collapse
Affiliation(s)
- Yilin Zhu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiangshuo Gong
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhipeng Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xun Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|