1
|
Lan L, Daly H, Sung R, Tuna F, Skillen N, Robertson PKJ, Hardacre C, Fan X. Mechanistic Study of Glucose Photoreforming over TiO 2-Based Catalysts for H 2 Production. ACS Catal 2023; 13:8574-8587. [PMID: 37441233 PMCID: PMC10334428 DOI: 10.1021/acscatal.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Indexed: 07/15/2023]
Abstract
Glucose is a key intermediate in cellulose photoreforming for H2 production. This work presents a mechanistic investigation of glucose photoreforming over TiO2 and Pt/m-TiO2 catalysts. Analysis of the intermediates formed in the process confirmed the α-scission mechanism of glucose oxidation forming arabinose (Cn-1 sugar) and formic acid in the initial oxidation step. The selectivity to sugar products and formic acid differed over Pt/TiO2 and TiO2, with Pt/TiO2 showing the lower selectivity to formic acid due to enhanced adsorption/conversion of formic acid over Pt/TiO2. In situ ATR-IR spectroscopy of glucose photoreforming showed the presence of molecular formic acid and formate on the surface of both catalysts at low glucose conversions, suggesting that formic acid oxidation could dominate surface reactions in glucose photoreforming. Further in situ ATR-IR of formic acid photoreforming showed Pt-TiO2 interfacial sites to be key for formic acid oxidation as TiO2 was unable to convert adsorbed formic acid/formate. Isotopic studies of the photoreforming of formic acid in D2O (with different concentrations) showed that the source of the protons (to form H2 at Pt sites) was determined by the relative surface coverage of adsorbed water and formic acid.
Collapse
Affiliation(s)
- Lan Lan
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Helen Daly
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rehana Sung
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M13 9PL, United
Kingdom
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
- Photon
Science Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Nathan Skillen
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, United
Kingdom
| | - Peter K. J. Robertson
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, United
Kingdom
| | - Christopher Hardacre
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xiaolei Fan
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Microbial Resistance to Carbapenems in Effluents from Gynaecological, Paediatric and Surgical Hospital Units. Antibiotics (Basel) 2022; 11:antibiotics11081103. [PMID: 36009972 PMCID: PMC9404768 DOI: 10.3390/antibiotics11081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to identify and count antimicrobial resistance (AMR) in hospital effluents (HEs) of 2 units of the University Hospital Mohamed VI the Mother and Child Hospital (MCH) and the Ar-razi Surgical Hospital (ArzH), and to compare the two hospital units in terms of ARMs and seasonal variation. Each HE was sampled during 2016 and 2017. After identification of the pathogenic strains and determination of AMR, the results were reported for 24 ABs, including 3 carbapenems (CBP), and their consumption rates. The Predicted environmental concentration (PEC) rate of carbapenems in the HE of the study sites is calculated. A comparative analysis of the AMR of the isolated bacterial species was performed and related to the evolution of PEC in HEs. In the ArzH effluents:15 strains isolated, 7 are carbanepenem-resistant Enterobacteria (CRE) and are resistant to at least one of the 3 carbapenems tested. ArzH and MCH effluents respectively show some similarities: 26.87% and 28.57% of isolated bacteria are resistant to ertapenem while 43.48% and 57.14% are resistant to meropenem. However, for imipenem, the MCH effluent has a higher percentage of bacterial antibiotic resistance than ArzH. In addition, the percentage of resistance in each hospital unit effluent is mainly in relation with the increasing antibiotic consumption and predicted environmental values PEC for very antibiotic in each unit in the same period.
Collapse
|
3
|
Eder M, Courtois C, Petzoldt P, Mackewicz S, Tschurl M, Heiz U. Size and Coverage Effects of Ni and Pt Co-Catalysts in the Photocatalytic Hydrogen Evolution from Methanol on TiO 2(110). ACS Catal 2022. [DOI: 10.1021/acscatal.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moritz Eder
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Carla Courtois
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Philip Petzoldt
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sonia Mackewicz
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Tschurl
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ueli Heiz
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
4
|
The Role of Metal Nanoparticles in Promoting Photocatalysis by TiO 2. Top Curr Chem (Cham) 2022; 380:17. [PMID: 35237896 PMCID: PMC8891105 DOI: 10.1007/s41061-022-00373-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022]
Abstract
In this review, we highlight the role played by metal nanoparticles (NPs) in photocatalytic oxidation with titania as a support. This is presented in two parts, namely, partial photo-oxidation in which an organic sacrificial agent is oxidised in anaerobic conditions to produce hydrogen (photo-reforming), and photo-oxidative mineralisation of organics in aerobic conditions. We present some rules for such reactions that dictate which organic molecules can react readily, and which metals are likely to be useful for such reactions. Generally, the presence of metal NPs enhances enormously the ability of titania to yield hydrogen from photo-reforming, and a wide range of molecules can be used, including biomass. The metal NPs most used are those that are easily reduced, that is, the precious metals. The large enhancement in rate seen with metal for hydrogen production is not so extreme for the oxidation reactions, but is still significant. An important factor in all of this catalysis is the nature of the interaction between the metal NPs, which can play a multiplicity of chemical and electronic roles, and the photoactive support. A sharp dependency of rate on loading of metal is found, with maximum rates at ~0.5–2 wt% loading, depending on the metal used. The source of this dependency is the bifunctional nature of the system, in which the intimacy of both materials is crucial to performance. This rate variation is linked to the interface between the two, which is then linked to the size of the metal NPs. In fact, the rate is proportional to an area adjacent to the metal particles that we call the expanding photocatalytic area and overlap (EPAO) kinetic model. This model describes the dependence well. Rising rates with increasing coverage of particles is associated with increase in this total area but, at the maximum, these areas overlap and at higher loadings the available active area diminishes, reproducing the observed behaviour well.
Collapse
|
5
|
Saedy S, Hiemstra N, Benz D, Van Bui H, Nolan M, van Ommen JR. Dual promotional effect of Cu xO clusters grown with atomic layer deposition on TiO 2 for photocatalytic hydrogen production. Catal Sci Technol 2022; 12:4511-4523. [PMID: 35924073 PMCID: PMC9291445 DOI: 10.1039/d2cy00400c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022]
Abstract
The promotional effects on photocatalytic hydrogen production of CuxO clusters deposited using atomic layer deposition (ALD) on P25 TiO2 are presented. The structural and surface chemistry study of CuxO/TiO2 samples, along with first principles density functional theory simulations, reveal the strong interaction of ALD deposited CuxO with TiO2, leading to the stabilization of CuxO clusters on the surface; it also demonstrated substantial reduction of Ti4+ to Ti3+ on the surface of CuxO/TiO2 samples after CuxO ALD. The CuxO/TiO2 photocatalysts showed remarkable improvement in hydrogen productivity, with 11 times greater hydrogen production for the optimum sample compared to unmodified P25. With the combination of the hydrogen production data and characterization of CuxO/TiO2 photocatalysts, we inferred that ALD deposited CuxO clusters have a dual promotional effect: increased charge carrier separation and improved light absorption, consistent with known copper promoted TiO2 photocatalysts and generation of a substantial amount of surface Ti3+ which results in self-doping of TiO2 and improves its photo-activity for hydrogen production. The obtained data were also employed to modify the previously proposed expanding photocatalytic area and overlap model to describe the effect of cocatalyst size and weight loading on photocatalyst activity. Comparing the trend of surface Ti3+ content increase and the photocatalytically promoted area, calculated with our model, suggests that the depletion zone formed around the heterojunction of CuxO–TiO2 is the main active area for hydrogen production, and the hydrogen productivity of the photocatalyst depends on the surface coverage by this active area. However, the overlap of these areas suppresses the activity of the photocatalyst. The depletion zone formed around the CuxO clusters is the main photocatalytically active area, and the H2 production rate depends on surface coverage with this area; however, the overlap of these areas suppresses the photocatalyst activity.![]()
Collapse
Affiliation(s)
- Saeed Saedy
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Nico Hiemstra
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dominik Benz
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Hao Van Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi 12116, Vietnam
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP, Cork, Ireland
| | - J. Ruud van Ommen
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
6
|
Photocatalytic production of H2 is a multi-criteria optimization problem: Case study of RuS2/TiO2. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Ćwieka K, Czelej K, Colmenares JC, Jabłczyńska K, Werner Ł, Gradoń L. Supported Plasmonic Nanocatalysts for Hydrogen Production by Wet and Dry Photoreforming of Biomass and Biogas Derived Compounds: Recent Progress and Future Perspectives. ChemCatChem 2021. [DOI: 10.1002/cctc.202101006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karol Ćwieka
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
- Faculty of Materials Science and Engineering Warsaw University of Technology Woloska 141 02507 Warsaw Poland
| | - Kamil Czelej
- Department of Complex System Modeling Institute of Theoretical Physics Faculty of Physics University of Warsaw Pasteura 5 02093 Warszawa Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01224 Warsaw Poland
| | - Katarzyna Jabłczyńska
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| | - Łukasz Werner
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| | - Leon Gradoń
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| |
Collapse
|
8
|
Catalytic and photocatalytic water gas shift reaction (WGSR) using a continuous flow, gas phase reactor. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Davis KA, Yoo S, Shuler EW, Sherman BD, Lee S, Leem G. Photocatalytic hydrogen evolution from biomass conversion. NANO CONVERGENCE 2021; 8:6. [PMID: 33635439 PMCID: PMC7910387 DOI: 10.1186/s40580-021-00256-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient, sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol, glycerol, formic acid, glucose, and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efficiency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material, as the development of such will incur greater benefits towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Collapse
Affiliation(s)
- Kayla Alicia Davis
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Sunghoon Yoo
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi-do, 13306, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eric W Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Photonic efficiency and selectivity study of M (M=Pt, Pd, Au and Ag)/TiO2 photocatalysts for methanol reforming in the gas phase. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Preparation and Characterization of Nanocrystalline TiO2 on Microsericite for High-Efficiency Photo-Energy Conversion of Methanol to Hydrogen. CRYSTALS 2019. [DOI: 10.3390/cryst9080380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TiO2 and TiO2/sericite photocatalysts were successfully synthesized via the sol-gel method by adding a varying amount of acetic acid. The effect of acetic acid on TiO2 and TiO2/sericite photocatalysts was studied. The crystallite size, surface morphology, chemical composition, specific surface area, surficial functional groups, and light absorbance of the prepared photocatalysts were revealed by the analysis of X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometry (SEM-EDS), nitrogen adsorption-desorption isotherms by using BET theory (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis absorption spectrometry. Photo-energy conversion of methanol to hydrogen was also conducted over the prepared photocatalysts. The best hydrogen production was achieved by using the TiO2/sericite photocatalyst to give a hydrogen production rate of 1424 μmol/g·h in 6 h of UV-light irradiation.
Collapse
|
12
|
Bahruji H, Maarof H, Abdul Rahman N. Quantum efficiency of Pd/TiO2 catalyst for photocatalytic reforming of methanol in ultra violet region. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00822-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|