1
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
2
|
Rodrigues CH, Silva BP, Silva MLR, Gouveia DC, Fontes A, Macêdo DPC, Santos BS. Methylene blue@silver nanoprisms conjugates as a strategy against Candida albicans isolated from balanoposthitis using photodynamic inactivation. Photodiagnosis Photodyn Ther 2024; 46:104066. [PMID: 38552814 DOI: 10.1016/j.pdpdt.2024.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Balanoposthitis can affect men in immunocompromised situations, such as HIV infection and diabetes. The main associated microorganism is Candida albicans, which can cause local lesions, such as the development of skin cracks associated with itching. As an alternative to conventional treatment, there is a growing interest in the photodynamic inactivation (PDI). It has been shown that the association of photosensitizers with metallic nanoparticles may improve the effectiveness of PDI via plasmonic effect. We have recently shown that the association of methylene blue (MB), a very known photosensitizer, with silver prismatic nanoplatelets (AgNPrs) improved PDI of a resistant strain of Staphylococcus aureus. To further investigate the experimental conditions involved in PDI improvement, in the present study, we studied the effect of MB concentration associated with AgNPrs exploring spectral analysis, zeta potential measurements, and biological assays, testing the conjugated system against C. albicans isolated from a resistant strain of balanoposthitis. The AgNPrs were synthesized through silver anisotropic seed growth induced by the anionic stabilizing agent poly(sodium 4-styrenesulfonate) and showed a plasmon band fully overlapping the MB absorption band. MB and AgNPrs were conjugated through electrostatic association and three different MB concentrations were tested in the nanosystems. Inactivation using red LED light (660 nm) showed a dose dependency in respect to the MB concentration in the conjugates. Using the highest MB concentration (100 µmol⋅L-1) with AgNPr, it was possible to completely inactivate the microorganisms upon a 2 min irradiation exposure. Analyzing optical changes in the conjugates we suggest that these results indicate that AgNPrs are enhancers of MB photodynamic action probably by a combined mechanism of plasmonic effect and reduction of MB dimerization. Therefore, MBAgNPrs can be considered a suitable choice to be applied in PDI of resistant microorganisms.
Collapse
Affiliation(s)
- Cláudio H Rodrigues
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Bruna Pereira Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Marques L R Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Dimitri C Gouveia
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Danielle P C Macêdo
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
3
|
Kah G, Chandran R, Abrahamse H. Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells 2023; 12:2012. [PMID: 37566091 PMCID: PMC10417642 DOI: 10.3390/cells12152012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Different conventional therapeutic procedures are utilized globally to manage cancer cases, yet the mortality rate in patients with cancer remains considerably high. Developments in the field of nanotechnology have included novel therapeutic strategies to deal with cancer. Biogenic (green) metallic silver nanoparticles (AgNPs) obtained using plant-mediated protocols are attractive to researchers exploring cancer treatment. Biogenic AgNPs present advantages, since they are cost-effective, easy to obtain, energy efficient, and less toxic compared to chemically and physically obtained AgNPs. Also, they present excellent anticancer abilities thanks to their unique sizes, shapes, and optical properties. This review provides recent advancements in exploring biogenic AgNPs as a drug or agent for cancer treatment. Thus, great attention was paid to the anticancer efficacy of biogenic AgNPs, their anticancer mechanisms, their efficacy in cancer photodynamic therapy (PDT), their efficacy in targeted cancer therapy, and their toxicity.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (G.K.); (H.A.)
| | | |
Collapse
|
4
|
Ren W, Tang Q, Cao H, Wang L, Zheng X. Biological Preparation of Chitosan-Loaded Silver Nanoparticles: Study of Methylene Blue Adsorption as Well as Antibacterial Properties under Light. ACS OMEGA 2023; 8:22998-23007. [PMID: 37396237 PMCID: PMC10308547 DOI: 10.1021/acsomega.3c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
Human beings have made significant progress in the medical field since antibiotics were widely used. However, the consequences caused by antibiotics abuse have gradually shown their negative effects. Antibacterial photodynamic therapy (aPDT) has the ability to resist drug-resistant bacteria without antibiotics, and as it is increasingly recognized that nanoparticles can effectively solve the deficiency problem of singlet oxygen produced by photosensitizers, the application performance and scope of aPDT are gradually being expanded. In this study, we used a biological template method to reduce Ag+ to silver atoms in situ with bovine serum albumin (BSA) rich in various functional groups in a 50 °C water bath. The aggregation of nanomaterials was inhibited by the protein's multistage structure so that the formed nanomaterials have good dispersion and stability. It is unexpected that we used chitosan microspheres (CMs) loaded with silver nanoparticles (AgNPs) to adsorb methylene blue (MB), which is both a pollutant and photosensitive substance. The Langmuir adsorption isothermal curve was used to fit the adsorption capacity. The exceptional multi-bond angle chelating forceps of chitosan make it have a powerful physical adsorption capacity, and dehydrogenated functional groups of proteins with negative charge can also bond to positively charged MB to form a certain amount of ionic bonds. Compared with single bacteriostatic materials, the bacteriostatic capacity of the composite materials adsorbing MB under light was significantly improved. This composite material not only has a strong inhibitory effect on Gram-negative bacteria but also has a good inhibitory effect on the growth of Gram-positive bacteria poorly affected by conventional bacteriostatic agents. In conclusion, the CMs loaded with MB and AgNPs have some possible applications in the purification or treatment of wastewater in the future.
Collapse
Affiliation(s)
- Wensheng Ren
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Qian Tang
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Lihao Wang
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| | - Xuefang Zheng
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| |
Collapse
|
5
|
Zhao J, Gao N, Xu J, Zhu X, Ling G, Zhang P. Novel strategies in melanoma treatment using silver nanoparticles. Cancer Lett 2023; 561:216148. [PMID: 36990267 DOI: 10.1016/j.canlet.2023.216148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Melanoma has remarkably gained extensive attention owing to its high morbidity and mortality. Conventional treatment methods still have some problems and defects. Therefore, more and more novel methods and materials have been continuously developed. Silver nanoparticles (AgNPs) have attracted significant interest in the field of cancer research especially for melanoma treatment because of their excellent properties including antioxidant, antiproliferative, anti-inflammatory, antibacterial, antifungal, and antitumor abilities. In this review, the applications of AgNPs in the prevention, diagnosis, and treatment of cutaneous melanoma are mainly introduced. It also focuses on the therapy strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy for melanoma treatment. Taken together, AgNPs play an increasingly crucial role in cutaneous melanoma treatment, which have promising application in the future.
Collapse
|
6
|
Sun B, Guo X, Feng M, Cao S, Yang H, Wu H, van Stevendaal MHME, Oerlemans RAJF, Liang J, Ouyang Y, van Hest JCM. Responsive Peptide Nanofibers with Theranostic and Prognostic Capacity. Angew Chem Int Ed Engl 2022; 61:e202208732. [PMID: 36574602 PMCID: PMC9544150 DOI: 10.1002/anie.202208732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) is a highly promising therapeutic modality for cancer treatment. The development of stimuli-responsive photosensitizer nanomaterials overcomes certain limitations in clinical PDT. Herein, we report the rational design of a highly sensitive PEGylated photosensitizer-peptide nanofiber (termed PHHPEG6 NF) that selectively aggregates in the acidic tumor and lysosomal microenvironment. These nanofibers exhibit acid-induced enhanced singlet oxygen generation, cellular uptake, and PDT efficacy in vitro, as well as fast tumor accumulation, long-term tumor imaging capacity and effective PDT in vivo. Moreover, based on the prolonged presence of the fluorescent signal at the tumor site, we demonstrate that PHHPEG6 NFs can also be applied for prognostic monitoring of the efficacy of PDT in vivo, which would potentially guide cancer treatment. Therefore, these multifunctional PHHPEG6 NFs allow control over the entire PDT process, from visualization of photosensitizer accumulation, via actual PDT to the assessment of the efficacy of the treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Xiaoping Guo
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Mei Feng
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Shoupeng Cao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Haowen Yang
- Laboratory of ImmunoengineeringDepartment of Biomedical EngineeringInstitute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Hanglong Wu
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Marleen H. M. E. van Stevendaal
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Roy A. J. F. Oerlemans
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Jinning Liang
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Yiqiang Ouyang
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
7
|
Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022; 10:2158. [PMID: 36140259 PMCID: PMC9495799 DOI: 10.3390/biomedicines10092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody-drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody-drug conjugates is their lack of versatility, given cancer's heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.
Collapse
Affiliation(s)
- Zaria Malindi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
8
|
Montaseri H, Nkune NW, Abrahamse H. Active targeted photodynamic therapeutic effect of silver-based nanohybrids on melanoma cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
van Hest J, Sun B, Guo X, Feng M, Cao S, Yang H, Wu H, van Stevendaal MH, Oerlemans RA, Liang J, Ouyang Y. Responsive Peptide Nanofibers with Theranostic and Prognostic Capacity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan van Hest
- Eindhoven University of Technology Department of Bio-medical engineering and Chemical engineering & Chemistry building 14, Helix (STO 3.39) Het Kranenveld 5600 MB Eindhoven NETHERLANDS
| | - Bingbing Sun
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Xiaoping Guo
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Mei Feng
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Shoupeng Cao
- Eindhoven University of Technology: Technische Universiteit Eindhoven biomedical engineering NETHERLANDS
| | - Haowen Yang
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Hanglong Wu
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | | | - Roy A.J.F. Oerlemans
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Jinning Liang
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Yiqiang Ouyang
- Guangxi Medical University Laboratory Animal Center CHINA
| |
Collapse
|
10
|
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021; 22:12549. [PMID: 34830431 PMCID: PMC8620728 DOI: 10.3390/ijms222212549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a skin malignancy arising from melanocytes, the incidence of which has been rising in recent years. It poses therapeutic challenges due to its resistance to chemotherapeutic drugs and radiation therapy. Photodynamic therapy (PDT) is an alternative non-invasive modality that requires a photosensitizer (PS), specific wavelength of light, and molecular oxygen. Several studies using conventional PSs have highlighted the need for improved PSs for PDT applications to achieve desired therapeutic outcomes. The incorporation of nanoparticles (NPs) and targeting moieties in PDT have appeared as a promising strategy to circumvent various drawbacks associated with non-specific toxicity, poor water solubility, and low bioavailability of the PSs at targeted tissues. Currently, most studies investigating new developments rely on two-dimensional (2-D) monocultures, which fail to accurately mimic tissue complexity. Therefore, three-dimensional (3-D) cell cultures are ideal models to resemble tumor tissue in terms of architectural and functional properties. This review examines various PS drugs, as well as passive and active targeted PS nanoparticle-mediated platforms for PDT treatment of MM on 2-D and 3-D models. The overall findings of this review concluded that very few PDT studies have been conducted within 3-D models using active PS nanoparticle-mediated platforms, and so require further investigation.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
11
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
12
|
Sengupta D, Das S, Sharma D, Chattopadhyaya S, Mukherjee A, Mazumdar ZH, Das B, Basu S, Sengupta M. An Anti-inflammatory Fe 3 O 4 -Porphyrin Nanohybrid Capable of Apoptosis through Upregulation of p21 Kinase Inhibitor Having Immunoprotective Properties under Anticancer PDT Conditions. ChemMedChem 2021; 17:e202100550. [PMID: 34710263 DOI: 10.1002/cmdc.202100550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/27/2021] [Indexed: 12/17/2022]
Abstract
We report the influence of Fe3 O4 nanoparticles (NPs) on porphyrins in the development of photosensitizers (PSs) for efficient photodynamic therapy (PDT) and possible post-PDT responses for inflicting cancer cell death. Except for Au, most metal-based nanomaterials are unsuitable for clinical applications. The US Food and Drug Administration and other agencies have approved Feraheme and a few other iron oxide NPs for clinical use, paving the way for novel biocompatible immunoprotective superparamagnetic iron oxide nanohybrids to be developed as nanotherapeutics. A water-soluble nanohybrid, referred to here as E-NP, comprising superparamagnetic Fe3 O4 NPs functionalised with tripyridyl porphyrin PS was introduced through a rigid 4-carboxyphenyl linker. As a PDT agent, the efficacy of E-NP toward the AGS cancer cell line showed enhanced photosensitising ability as determined through in vitro photobiological assays. The cellular uptake of E-NPs by AGS cells led to apoptosis by upregulating ROS through cell-cycle arrest and loss of mitochondrial membrane potential. The subcellular localisation of the PSs in mitochondria stimulated apoptosis through upregulation of p21, a proliferation inhibitor capable of preventing tumour development. Under both PDT and non-PDT conditions, this nanohybrid can act as an anti-inflammatory agent by decreasing the production of NO and superoxide ions in murine macrophages, thus minimising collateral damage to healthy cells.
Collapse
Affiliation(s)
- Devashish Sengupta
- Department of Chemistry, Assam University, Silchar, Assam, 788011, India
| | - Subhojit Das
- Department of Chemistry, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Debdulal Sharma
- Department of Chemistry, Assam University, Silchar, Assam, 788011, India
| | - Saran Chattopadhyaya
- School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute Narendrapur, Kolkata, 700103, India
| | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, Kolkata, West Bengal, 700 029, India
| | | | - Biswajit Das
- Department of Biotechnology, Assam University, Silchar, Assam, 788 011, India
| | - Samita Basu
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, 700 064, India
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, Assam, 788 011, India
| |
Collapse
|
13
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Development of photoresponsive zinc oxide nanoparticle - encapsulated lignin functionalized with 2-[(E)-(2-hydroxy naphthalen-1-yl) diazenyl] benzoic acid: A promising photoactive agent for antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102479. [PMID: 34375774 DOI: 10.1016/j.pdpdt.2021.102479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND By coalescing nanotechnology with photochemistry and microbiology, a new type of photoactive antimicrobial agent based on zinc oxide nanoparticles incorporated into biomacromolecular lignin was formulated, which possesses a wide-spectrum antimicrobial activity, providing effects in the field of antimicrobial photodynamic therapy. METHODS The biomacromolecule lignin was functionally modified with 2-[(E)-(2-hydroxy naphthalen-1-yl) diazenyl] benzoic acid by Steglich esterification, and loaded with zinc oxide nanoparticles. The products were characterized by UV-Visible, FTIR, and NMR spectroscopic techniques, and by SEM, TEM, and X-ray diffraction analysis (XRD). The photoresponsive behavior of the dye, functionally modified lignin-dye ester and its nanoparticle dispersed product was investigated. The photoinduced antibacterial and antifungal effects of zinc oxide nanoparticle encapsulated functionally modified lignin were explicated in detail. RESULTS The photostabilization property of the chromophoric system was found to be enhanced when attached to lignin, and was further improved by the encapsulation of photoactive zinc oxide nanoparticles. The detailed studies on the photoinduced antibacterial and antifungal property revealed that upon light irradiation the antibacterial and antifungal efficacies of the test system got magnified. CONCLUSIONS Incorporation of photoactive zinc oxide nanoparticles into the functionalized macromolecular system could make important changes in their photoresponsive abilities such as enhanced light absorption behavior and photostabilization properties enriched with photoinduced antimicrobial efficacy, which rendered the functionally modified system a potential photoinduced antimicrobial agent. They may find use in various biomedical applications especially in antimicrobial photodynamic therapy.
Collapse
|
15
|
Rodrigues CH, Araújo EAG, Almeida RP, Nascimento TP, Silva MM, Abbas G, Nunes FD, Lins E, Lira-Nogueira MCB, Falcão JSA, Fontes A, Porto ALF, Pereira G, Santos BS. Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis. Photodiagnosis Photodyn Ther 2021; 34:102315. [PMID: 33932564 DOI: 10.1016/j.pdpdt.2021.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/04/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Mastitis is a bacterial infection that affects all lactating mammals, and in dairy cattle, it leads to a reduction in their milk production and, in worse cases, it may lead to animal death. One viable therapeutic modality for overcoming bacterial resistance can be photodynamic inactivation (PDI), a therapeutic modality for bacterial infection treatment. One of the main factors that can lead to an efficient PDI process is the association of metallic nanoparticles in the close vicinity of photosensitizers, which has shown promising results due to localized surface plasmon resonance phenomena. In this work, methylene blue (MB) molecules were associated with Ag prismatic nanoplatelets (AgNPrs) to use as PDI photosensitizer against Staphylococcus aureus isolated from bubaline mastitis. The optical plasmonic activity of AgNPrs was tuned to the MB absorption region (600-700 nm) by inducing their growth into prismatic shapes by a seed-mediated procedure, using poly (sodium 4-styrene sulfonate) as the surfactant. A simulation on the plasmonic properties of the nanoprisms, applying particle size within the dimensions determined by TEM image analysis (d = 32 ± 6 nm), showed a 30 % increase of the incident field on the prismatic tips. Photodynamic results showed that the electrostatic AgNPr-MB conjugates promoted enhancement (ca. 15 %) of the reactive oxygen species production. Besides, PDI mediated by AgNPrs-MB led to the complete inactivation of the mastitis S. aureus strain after 6 min inactivation, in contrast to PDI mediated by MB, which reduced less than a 0.5 bacterial log. Thus, the results show this plasmonic enhanced photodynamic tool's potential to be applied in the inactivation of multi-resistant bacterial strains.
Collapse
Affiliation(s)
- Cláudio H Rodrigues
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Evanísia A G Araújo
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Rômulo P Almeida
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thiago P Nascimento
- Morphology and Animal Physiology Department, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Marllyn M Silva
- Academic Center of Vitória, Federal University of Pernambuco, Vitória, PE, Brazil
| | - Ghulam Abbas
- Department of Physics, Riphah International University Faisalabad Campus, Pakistan
| | - Frederico D Nunes
- Nuclear Engineering Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emery Lins
- Electronic and Systems Department, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Juliana S A Falcão
- Education and Health Center, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Adriana Fontes
- Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ana L F Porto
- Morphology and Animal Physiology Department, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
16
|
Mazumder ZH, Sharma D, Sengupta D, Mukherjee A, Boruah JS, Basu S, Shukla PK, Jha T. Photodynamic activity attained through the ruptured π-conjugation of pyridyl groups with a porphyrin macrocycle: synthesis and the photophysical and photobiological evaluation of 5-mono-(4-nitrophenyl)-10,15,20-tris-[4-(phenoxymethyl)pyridine]-porphyrin and its Zn(ii) complex. Photochem Photobiol Sci 2020; 19:1776-1789. [PMID: 33320165 DOI: 10.1039/d0pp00319k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article compares a reported hydrophobic and photobiologically inert porphyrin synthon, (NPh)TPyP, bearing a single meso-4-nitrophenyl group and three meso-pyridyl groups (A3B type) with a new photobiologically active metal-free porphyrin, P3N, and its zinc-complex, P3NZn, which bear a meso-4-nitrophenyl group along with three distal pyridyl groups. Both P3N and P3NZn experience ruptured π-conjugation with the porphyrin macrocycle and attain hydrophilicity, as indicated via density functional theory (DFT) calculations, becoming photobiologically active under in vitro conditions. The non-invasive photodynamic activity (PDA) predominantly shown by the zinc-complex P3NZn (with higher hydrophilicity) towards KRAS-mutated human lung-cancer cells (A549) was studied. The results indicate the existence of intracellular singlet oxygen inflicted anticancer PDA, which is apparent through the upregulation of intracellular reactive oxygen species (ROS) and the downregulation of both intracellular superoxide dismutase (SOD) and intracellular reduced glutathione (GSH) levels. The trends obtained from both SOD and GSH assays were indicators of therapeutic defence against oxidative stress via neutralizing superoxide anions (SOA).
Collapse
Affiliation(s)
- Zeaul H Mazumder
- Department of Chemistry, Assam University, Silchar, Assam 788011, India.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
18
|
Mazumdar ZH, Sharma D, Mukherjee A, Basu S, Shukla PK, Jha T, Sengupta D. meso-Thiophenium Porphyrins and Their Zn(II) Complexes: A New Category of Cationic Photosensitizers. ACS Med Chem Lett 2020; 11:2041-2047. [PMID: 33062190 DOI: 10.1021/acsmedchemlett.0c00266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
A new category of cationic meso-thiophenium porphyrins are introduced as possible alternatives to the popular meso-pyridinium porphyrins. Combinations of cationic porphyrins bearing meso-2-methylthiophenium and meso-4-hydroxyphenyl moieties T2(OH)2M (A2B2 type) and T(OH)3M (AB3 type) along with their zinc(II) complexes T2(OH)2MZn and T(OH)3MZn, are reported. The increase in the number of thienyl groups attached to the meso-positions of the porphyrin derivatives (A2B2 frame) has been shown to impart longer fluorescence lifetimes and stronger photocytotoxicity toward A549 lung cancer cells, as evident with T2(OH)2M and its corresponding diamagnetic metal complex T2(OH)2MZn. The photoactivated T2(OH)2MZn imparts an early stage reactive oxygen species (ROS) upregulation and antioxidant depletion in A549 cells and contributes to the strongest oxidative stress-induced cell death mechanism in the series. The DFT calculations of the singlet-triplet energy gap (ΔE) of all the four hydrophilic thiophenium porphyrin derivatives establish the potential applicability of these cationic photosensitizers as PDT agents.
Collapse
Affiliation(s)
- Zeaul Hoque Mazumdar
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| | - Debdulal Sharma
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata-700029, West Bengal, India
| | - Samita Basu
- Chemical Science Division Saha, Institute of Nuclear Physics, Kolkata-700064, West Bengal, India
| | - Pradeep Kumar Shukla
- Department of Physics, Assam University, Dargakona, Silchar-788011, Assam, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Devashish Sengupta
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| |
Collapse
|
19
|
Design and Synthesis of New Porphyrin Analogues as Potent Photosensitizers for Photodynamic Therapy: Spectroscopic Approach. J Fluoresc 2020; 30:397-406. [DOI: 10.1007/s10895-020-02513-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
20
|
Green Synthesis of Ag-MnO 2 Nanoparticles using Chelidonium majus and Vinca minor Extracts and Their In Vitro Cytotoxicity. Molecules 2020; 25:molecules25040819. [PMID: 32070017 PMCID: PMC7070435 DOI: 10.3390/molecules25040819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
Medicinal plants are often used as reducing agents to prepare metal nanoparticles through green-synthesis due to natural compounds and their potential as chemotherapeutic drugs. Thus, three types of eco-friendly Ag-MnO2 nanoparticles (Ag-MnO2NPs) were synthesized using C. majus (CmNPs), V. minor (VmNPs), and a 1:1 mixture of the two extracts (MNPs). These NPs were characterized using S/TEM, EDX, XRD, and FTIR methods, and their biological activity was assessed in vitro on normal keratinocytes (HaCaT) and skin melanoma cells (A375). All synthesized NPs had manganese oxide in the middle, and silver oxide and plant extract on the exterior. The NPs had different forms (polygonal, oval, and spherical), uniformly distributed, with crystalline structures and different sizes (9.3 nm for MNPs; 10 nm for VmNPs, and 32.4 nm for CmNPs). The best results were obtained with VmNPs, which reduced the viability of A375 cells up 38.8% and had a moderate cytotoxic effect on HaCaT (46.4%) at concentrations above 500 µg/mL. At the same concentrations, CmNPs had a rather proliferative effect, whereas MNPs negatively affected both cell lines. For the first time, this paper proved the synergistic action of the combined C. majus and V. minor extracts to form small and uniformly distributed Ag-MnO2NPs with high potential for selective treatments.
Collapse
|