1
|
Ide T, Huang WC, Horie M. Tris-Azo Triangular Paraphenylenes: Synthesis and Reversible Interconversion into Radial π-Conjugated Macrocycles. J Am Chem Soc 2024; 146:10246-10250. [PMID: 38569125 PMCID: PMC11027133 DOI: 10.1021/jacs.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
We report the synthesis of cycloparaphenylene derivatives featuring tris-azo groups. The smaller derivative, [3]cycloazobenzene, adopts a triangular all-cis form and exhibits thermally and photochemically stable characteristics due to significant ring strain as well as symmetric Kagome-patterned crystal packing. In contrast, the as-synthesized [3]cycloazobenzene with three biphenylene bridges adopts a triangular all-cis form, which undergoes photoinduced isomerization, leading to a photostationary state. Interestingly, the addition of an excess of acid selectively leads to the formation of an all-trans form. DFT calculations reveal that the interconversion from a triangular to a circular shape correlates with an increase in HOMO and a decrease in LUMO, characteristics intrinsic to radial π-conjugated systems.
Collapse
Affiliation(s)
- Tomohito Ide
- Department
of Chemical Science and Engineering, National
Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0997, Japan
| | - Wei-Ci Huang
- Department
of Chemical Engineering, National Tsing
Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Masaki Horie
- Department
of Chemical Engineering, National Tsing
Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Griwatz JH, Kessler ML, Wegner HA. Continuous-Flow Synthesis of Cycloparaphenylene Building Blocks on a Large Scale. Chemistry 2023; 29:e202302173. [PMID: 37534817 DOI: 10.1002/chem.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The synthesis of [n]cycloparaphenylenes ([n]CPPs) and similar nanohoops is usually based on combining building blocks to a macrocyclic precursor, which is then aromatized in the final step. Access to those building blocks in large amounts will simplify the synthesis and studies of CPPs as novel functional materials for applications. Herein, we report a continuous-flow synthesis of key CPP building blocks by using versatile synthesis techniques such as electrochemical oxidation, lithiations and Suzuki cross-couplings in self-built reactors on up-to kilogram scale.
Collapse
Affiliation(s)
- Jan H Griwatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Mika L Kessler
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
3
|
Kurosu S, Hata S, Ukai T, Mashiko Y, Choi S, Minakawa T, Tanuma Y, Maekawa T. Thermal treatment of water-soluble particles formed by compounds composed of carbon nanobelts and C 60 molecules. Sci Rep 2023; 13:18480. [PMID: 37898707 PMCID: PMC10613224 DOI: 10.1038/s41598-023-45840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
It was previously shown that spherical particles are self-assembled by compounds composed of C60-(6,6)CNB-C60, where CNB stands for "carbon nanobelt", by mixing two individual solutions of C60 and (6,6)CNB molecules dissolved in 1,2-dichlorobenzene at room temperature. The particles are monodisperse in water thanks to their high absolute value of the zeta potential in water. In this report, we investigate the effect of thermal treatment of the particles on some changes in the physical properties and structures. We find that the particles become electrically conductive after thermal treatment at 600 °C for 1 h. We suppose that the change in the electrical characteristics might have been caused by the structural change of (6,6)CNBs into opened-up ribbons composed of fused benzene rings, which construct networks supported by C60 molecules in the particles, judging by the change in the absorption and mass spectra of the particles after thermal treatment and analysis of a possible change in the structure of C60-(6,6)CNB-C60 based on quantum chemical calculations employing the PM6 method, with which it is known that nanostructures such as carbon nanotubes (CNTs) and (6,6)CNBs can be correctly estimated.
Collapse
Affiliation(s)
- Shunji Kurosu
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Sayaca Hata
- Graduate School of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Tomofumi Ukai
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Yuta Mashiko
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Sieun Choi
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Takanobu Minakawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
| | - Yuri Tanuma
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, 350-8585, Japan.
| |
Collapse
|
4
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
5
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
6
|
Kanai K, Inoue T, Furuichi T, Shinoda K, Iwahashi T, Ouchi Y. Electronic structure of n-cycloparaphenylenes directly observed by photoemission spectroscopy. Phys Chem Chem Phys 2021; 23:8361-8367. [PMID: 33876000 DOI: 10.1039/d1cp00625h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of n-cycloparaphenylenes ([n]CPP, n = 8, 9, and 12) were studied by ultraviolet photoemission, inverse photoemission, ultraviolet-visible absorption, and X-ray photoemission spectroscopy to detect their unique electronic structures. [n]CPP has a cyclic structure in which both ends of n-poly(p-phenylene)s (nP) are connected. The molecular size dependence of the HOMO-LUMO gap of [n]CPP was investigated by direct observation and was found to increase as the molecular size increased. This trend is opposite to that of typical π-conjugated systems. Highly strained molecular structures, especially of small [n]CPPs, significantly impact their electronic structure. Insights into the electronic structure of [n]CPP obtained here will aid the design of electronic functionality of non-planar π-conjugation systems.
Collapse
Affiliation(s)
- Kaname Kanai
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Liu YZ, Zhang JB, Yuan K. Theoretical Prediction on a Novel Reduction-Responsive Nanoring Having a Disulfide Group for Facile Encapsulation and Release of Fullerenes C 60 and C 70. ACS OMEGA 2020; 5:25400-25407. [PMID: 33043220 PMCID: PMC7542849 DOI: 10.1021/acsomega.0c03788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel reduction-responsive disulfide bond-containing cycloparaphenylene nanoring molecule (DSCPP) with a pyriform shape has been designed. In addition, the interactions between the designed nanoring (host) and fullerenes C60 and C70 (guests) were investigated theoretically at the M06-2X/6-31G(d,p) and M06-L/MIDI! levels of theory. By analyzing geometric characteristics and host-guest binding energies, it is revealed that the designed DSCPP is an ideal host molecule of guests C60 and C70. DSCPP presents excellent elastic deformation during the encapsulation of C60 and C70. The high binding energies suggest that both DSCPP⊃C60 and DSCPP⊃C70 (∼92 and 118 kJ·mol-1 at the M06-2X/6-31G(d,p) level of theory) are stable host-guest complexes, and the guest C70 is more strongly encapsulated than C60 in the gas phase. The thermodynamic information indicates that the formation of the two host-guest complexes is thermodynamically spontaneous. In addition, the frontier molecular orbital (FMO) features and intermolecular weak interaction region between DSCPP and fullerenes gusts are discussed to further understand the structures and properties of the DSCPP⊃fullerene systems. Finally, the ring-opening mechanism of the DSCPP under reduction conditions is investigated.
Collapse
Affiliation(s)
- Yan-Zhi Liu
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| | - Jian-Bin Zhang
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
8
|
Türel T, Valiyaveettil S. Fine-Tuning the Electronic Properties of Azo Chromophore-Incorporated Perylene Bisimide Dyads. J Org Chem 2020; 85:10593-10602. [PMID: 32700536 DOI: 10.1021/acs.joc.0c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perylene bisimide (PBI) and azo-compounds are fascinating molecules with interesting optical properties. Here, we combine the two chromophores to prepare nonconjugated and conjugated stable azo-PBI dyes. The detailed structural characterization, comparison of properties, and solid-state self-assembly of the compounds are discussed. The incorporation of azo groups at the bay side of PBI led to significant changes in optical properties as compared to the model PBIs (M1 and M2). All new azo-PBIs showed photoinduced isomerization, which caused disaggregation and enhancement in fluorescence. The amine-incorporated azo-PBIs (3 and 6) reduced chloroauric acid into gold nanoparticles. The current study offers a simple synthetic strategy and comparison of the properties of conjugated and nonconjugated azo-PBIs, which could be useful in photoelectronic devices.
Collapse
Affiliation(s)
- Tankut Türel
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
9
|
|