1
|
Mejía L, Sharma S, Baer R, Chan GKL, Rabani E. Convergence Analysis of the Stochastic Resolution of Identity: Comparing Hutchinson to Hutch++ for the Second-Order Green's Function. J Chem Theory Comput 2024; 20:7494-7502. [PMID: 39189663 DOI: 10.1021/acs.jctc.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Stochastic orbital techniques offer reduced computational scaling and memory requirements to describe ground and excited states at the cost of introducing controlled statistical errors. Such techniques often rely on two basic operations, stochastic trace estimation and stochastic resolution of identity, both of which lead to statistical errors that scale with the number of stochastic realizations (Nξ) as N ξ - 1 . Reducing the statistical errors without significantly increasing Nξ has been challenging and is central to the development of efficient and accurate stochastic algorithms. In this work, we build upon recent progress made to improve stochastic trace estimation based on the ubiquitous Hutchinson's algorithm and propose a two-step approach for the stochastic resolution of identity, in the spirit of the Hutch++ method. Our approach is based on employing a randomized low-rank approximation followed by a residual calculation, resulting in statistical errors that scale much better than N ξ - 1 . We implement the approach within the second-order Born approximation for the self-energy in the computation of neutral excitations and discuss three different low-rank approximations for the two-body Coulomb integrals. Tests on a series of hydrogen dimer chains with varying lengths demonstrate that the Hutch++-like approximations are computationally more efficient than both deterministic and purely stochastic (Hutchinson) approaches for low error thresholds and intermediate system sizes. Notably, for arbitrarily large systems, the Hutchinson-like approximation outperforms both deterministic and Hutch++-like methods.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Roi Baer
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|