1
|
Jézéquel YA, Svěrák F, Ramundo A, Orel V, Martínek M, Klán P. Structure-Photoreactivity Relationship Study of Substituted 3-Hydroxyflavones and 3-Hydroxyflavothiones for Improving Carbon Monoxide Photorelease. J Org Chem 2024; 89:4888-4903. [PMID: 38517741 PMCID: PMC11002828 DOI: 10.1021/acs.joc.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Carbon monoxide (CO) is notorious for its toxic effects but is also recognized as a gasotransmitter with considerable therapeutic potential. Due to the inherent challenges in its delivery, the utilization of organic CO photoreleasing molecules (photoCORMs) represents an interesting alternative to CO administration characterized by high spatial and temporal precision of release. This paper focused on the design, synthesis, and photophysical and photochemical studies of 20 3-hydroxyflavone (flavonol) and 3-hydroxyflavothione derivatives as photoCORMs. Newly synthesized compounds bearing various electron-donating and electron-withdrawing groups show bathochromically shifted absorption maxima and considerably enhanced CO release yields compared to the parent unsubstituted flavonol, exceeding 0.8 equiv of released CO in derivatives exhibiting excited states with a charge-transfer character. Until now, such outcomes have been limited to flavonol derivatives possessing a π-extended aromatic system. In addition, thione analogs of flavonols, 3-hydroxyflavothiones, show substantial bathochromic shifts of their absorption maxima and enhanced photosensitivity but provide lower yields of CO formation. Our study elucidates in detail the mechanism of CO photorelease from flavonols and flavothiones, utilizing steady-state and time-resolved spectroscopies and photoproduct analyses, with a particular emphasis on unraveling the structure-photoreactivity relationship and understanding competing side processes.
Collapse
Affiliation(s)
- Yann A. Jézéquel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Filip Svěrák
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Vojtěch Orel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Martínek
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
2
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
3
|
Dumur F. Recent advances on water-soluble photoinitiators of polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
5
|
Dumur F. Recent Advances on Photoinitiating Systems Designed for Solar Photocrosslinking Polymerization Reactions. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
|
10
|
|
11
|
Liu Z, Dumur F. Recent Advances on Visible Light Coumarin-based Oxime Esters as Initiators of Polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Yen SC, Lee ZH, Ni JS, Chen CC, Chen YC. Effects of the number and position of methoxy substituents on triphenylamine-based chalcone visible-light-absorbing photoinitiators. Polym Chem 2022. [DOI: 10.1039/d2py00604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five visible-light-absorbing triphenylamine-based chalcone photoinitiators (CY1–CY5) have been synthesized for application in free radical photopolymerization.
Collapse
Affiliation(s)
- Shih-Chieh Yen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Zhong-Han Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Ching-Chin Chen
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yung-Chung Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
- Photo-SMART (Photo-sensitive Material Advanced Research and Technology Center), National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan
| |
Collapse
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
23
|
Giacoletto N, Ibrahim-Ouali M, Dumur F. Recent advances on squaraine-based photoinitiators of polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
25
|
|
26
|
Dumur F. Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110178] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Noirbent G, Dumur F. Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
|
29
|
Ashraf J, Mughal EU, Sadiq A, Bibi M, Naeem N, Ali A, Massadaq A, Fatima N, Javid A, Zafar MN, Khan BA, Nazar MF, Mumtaz A, Tahir MN, Mirzaei M. Exploring 3-hydroxyflavone scaffolds as mushroom tyrosinase inhibitors: synthesis, X-ray crystallography, antimicrobial, fluorescence behaviour, structure-activity relationship and molecular modelling studies. J Biomol Struct Dyn 2020; 39:7107-7122. [DOI: 10.1080/07391102.2020.1805364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jamshaid Ashraf
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| | - Maryam Bibi
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Anam Massadaq
- Department of Zoology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbotabad, Pakistan
| | - Asif Javid
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | | | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Mughal EU, Sadiq A, Ayub M, Naeem N, Javid A, Sumrra SH, Zafar MN, Khan BA, Malik FP, Ahmed I. Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: synthesis, structure–activity relationship and molecular modelling simulations. J Biomol Struct Dyn 2020; 39:6154-6167. [DOI: 10.1080/07391102.2020.1803136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| | - Momna Ayub
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Asif Javid
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | | | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Ishtiaq Ahmed
- Department of Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Pigot C, Noirbent G, Brunel D, Dumur F. Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109797] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Zhao D, You J, Fu H, Xue T, Hao T, Wang X, Wang T. Photopolymerization with AIE dyes for solid-state luminophores. Polym Chem 2020. [DOI: 10.1039/c9py01671f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The photoinitiating activities of MPAs/ONI were evaluated. The AIE emission of MPAs occurred during photocuring. MPAs showed potential as fluorescent molecular probes to monitor the progress of photopolymerization.
Collapse
Affiliation(s)
- Di Zhao
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Jian You
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Hongyuan Fu
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Tanlong Xue
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Tingting Hao
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Xiaoning Wang
- College of Material Engineering
- Beijing Institute of Fashion Technology
- Beijing 100019
- People's Republic of China
| | - Tao Wang
- Department of Organic Chemistry
- College of chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|