1
|
Zhao J, Li C, Wei S, Lü C, Zou LW. A multifunctional fluorescent probe based on Schiff base with AIE and ESIPT characteristics for effective detections of Pb 2+, Ag + and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122904. [PMID: 37229941 DOI: 10.1016/j.saa.2023.122904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
In this work, three Schiff-based fluorescent probes with aggregation-induced emission (AIE) and excited intramolecular proton transfer (ESIPT) characters were synthesized by grafting 2-aminobenzothiazole group onto 4-substituted salicylaldehydes. More important, a rare tri-responsive fluorescent probe (SN-Cl) was developed by purposeful variation of substituents in the molecule. It could selectively identify Pb2+, Ag+ and Fe3+ in different solvent systems or with the help of masking agent and show complete fluorescence enhancement without interference of other ions. Meanwhile, the other two probes (SN-ON and SN-N) could only recognize Pb2+ in DMSO/Tris-HCl buffer (3: 7, v/v, pH = 7.4). According to Job's plot, density functional theory (DFT) calculations and NMR analysis, coordination between SN-Cl and Pb2+/Ag+/Fe3+ was determined. The LOD values for three ions were as low as 0.059 μM, 0.012 μM and 8.92 μM, respectively. Ideally, SN-Cl showed satisfactory performance in real water samples detection and test paper experiments for three ions. Also, SN-Cl could be used as an excellent imaging agent for Fe3+ in HeLa cells. Therefore, SN-Cl has the ability to be a "single fluorescent probe for three targets".
Collapse
Affiliation(s)
- Jianing Zhao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China
| | - Ciqin Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Sihan Wei
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China.
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Lai L, Yan F, Chen G, Huang Y, Huang L, Li D. Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. Molecules 2023; 28:5689. [PMID: 37570660 PMCID: PMC10420214 DOI: 10.3390/molecules28155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
One of the main challenges faced in food safety is the accumulation of toxic heavy metals from environmental sources, which can sequentially endanger human health when they are consumed. It is invaluable to establish a practical assay for the determination of heavy metals for food safety. Among the current detection methods, technology based on fluorescent probes, with the advantages of sensitivity, convenience, accuracy, cost, and reliability, has recently shown pluralistic applications in the food industry, which is significant to ensure food safety. Hence, this review systematically presents the recent progress on novel fluorescent probes in determining heavy metals for food safety over the past five years, according to fluorophores and newly emerging sensing cores, which could contribute to broadening the prospects of fluorescent materials and establishing more practical assays for heavy metal determinations.
Collapse
Affiliation(s)
- Liqing Lai
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Fang Yan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Geng Chen
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Yiwen Huang
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Daliang Li
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| |
Collapse
|
3
|
Alhamami MAM, Algethami JS, Khan S. A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions. Crit Rev Anal Chem 2023; 54:2689-2713. [PMID: 37029905 DOI: 10.1080/10408347.2023.2197073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Thiazole and its derivatives play an important role in biological and non-biological fields due to several structural and electronic behaviors associated with it. Thiazole derivatives act as chemosensors because they formed metal complexes upon interacting with various heavy metal ions like Cd2+, Co2+, Cr3+, Fe3+, Ag+, Al3+, Cu2+, Pd2+, Hg2+, Ni2+, Ga3+, In3+, Sn4+, Pb2+, Zn2+ as well as other cations. These metal ions are of prime importance from the environmental point of view with high. This review article focuses on the thiazole-based colorimetric as well as fluorometric sensor for the recognition of different heavy metal cations in various specimens like agricultural, biological, and environmental. It also summarizes the binding stoichiometry, detection limit, pH, structure, and practical application of the reported thiazole-based chemosensors. Further, the sensing performances, have been discussed and compared with some reported organic sensors.
Collapse
Affiliation(s)
- Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
A 1,3,4-thiadiazole functionalized Schiff base based fluorescence enhancement and colorimetric probe for detection of Cu (II) ion and its potential applications. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Prabakaran G, Vickram R, Velmurugan K, Immanuel David C, Prince Makarios Paul S, Suresh Kumar R, Almansour AI, Perumal K, Abiram A, Prabhu J, Nandhakumar R. A lead selective dimeric quinoline based fluorescent chemosensor and its applications in milk and honey samples, smartphone and bio-imaging. Food Chem 2022; 395:133617. [DOI: 10.1016/j.foodchem.2022.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
|
6
|
Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Li Y, Cao B, Zhou Q, Zhang X, Li B, Su X, Shi Y. Enhancing fluorescence of benzimidazole derivative via solvent-regulated ESIPT and TICT process: A TDDFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119862. [PMID: 33957448 DOI: 10.1016/j.saa.2021.119862] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
In this work, we use density functional theory and time dependent density functional theory to explore the ESIPT and TICT process of 6-(1H-Benzoimidazol-2-yl)-2,3-dimethoxy-phenol (BIDOP) in cyclohexane (CHX) and tetrahydrofuran (THF) solvent, respectively. It reveals that ESIPT process of BIDOP can occur in both CHX and THF solvent at the first excited state with similar reaction barrier. Remarkably, compared to barrierless from keto (K*) to TICT state of BIDOP in THF solvent, the reaction barrier between K* and TICT state is up to 20.28 kcal/mol for in CHX that TICT process is inhibited in CHX solvent. The absence of nonradiative decay TICT state of BIDOP in CHX solvent induces higher fluorescence in CHX compared to in THF solvent. These findings indicate that CHX solvent can effectively enhance fluorescence of BIDOP. Our study highlights a convenient approach for enhancing fluorescence and is significant for photophysics and photobiology field.
Collapse
Affiliation(s)
- You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qiao Zhou
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xing Su
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Cysteamine-mediated upconversion sensor for lead ion detection in food. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schiff bases, named after Hugo Schiff, are highly reactive organic compounds broadly used as pigments and dyes, catalysts, intermediates in organic synthesis, and polymer stabilizers. Lots of Schiff bases are described in the literature for various biological activities, including antimalarial, antibacterial, antifungal, anti-inflammatory, and antiviral. Schiff bases are also known for their ability to form complexes with several metals. Very often, complexes of Schiff bases with metals and Schiff bases alone have demonstrated interesting antitumor activity. Given the innumerable vastness of data regarding antitumor activity of all these compounds, we focused our attention on mono- and bis-Schiff bases alone as antitumor agents. We will highlight the most significant examples of compounds belonging to this class reported in the literature.
Collapse
|
10
|
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123656. [PMID: 33264865 DOI: 10.1016/j.jhazmat.2020.123656] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 05/25/2023]
Abstract
Ions, including anions and heavy metals, are extremely toxic and easily accumulate in the human body, threatening the health of humans and even causing human death at low concentrations. It is therefore necessary to detect these toxic ions in low concentrations in water. Fluorescent sensing is a good method for detecting these ions, but some conventional dyes often exhibit an aggregation caused quench (ACQ) effect in their solid state, limiting their large-scale application. Fluorescent probes based on aggregation-induced emission (AIE) properties have received significant attention due to their high fluorescence quantum yields in their nano aggragated states, easy fabrication, use of moderate conditions, and selevtive recognization of organic/inorganic compounds in water with obvious changes in fluorescence. We surmarize the recent advances of AIE-based sensors for low concentration toxic ion detection in water. The detection probes can be divided into three categories: chemical reaction types, chemical interaction types and physical interaction types. Chemical reaction types utilize nucleophilic addition and coordination reaction, while chemical interaction types rely on hydrogen bonding and anion-π interactions. The physical interaction types are composed of electrostatic attractions. We finally comment on the challenges and outlook of AIE-active sensors.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
Acharyya S, Gharami S, Sarkar D, Ghosh P, Murmu N, Mondal TK. A thioether containing reversible fluorescence “turn-on” chemosensor for selective detection of zinc(II): Applications in live cell imaging and inhibit logic gate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|