1
|
Rupa SA, Patwary MAM, Ghann WE, Abdullahi A, Uddin AKMR, Mahmud MM, Haque MA, Uddin J, Kazi M. Synthesis of a novel hydrazone-based compound applied as a fluorescence turn-on chemosensor for iron(iii) and a colorimetric sensor for copper(ii) with antimicrobial, DFT and molecular docking studies. RSC Adv 2023; 13:23819-23828. [PMID: 37564256 PMCID: PMC10411390 DOI: 10.1039/d3ra04364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Hydrazone-hydrazide-based linkers perform a crucial role in environmental as well as biological fields. Such linkers are employed to detect exact metal ions at a minute level; hence, numerous probes are available. Even though thiophene-based molecules have a unique position in the medicinal arena, only very few chemosensors are reported based on such a moiety. In this current work, a novel hydrazide-hydrazone-based fluorogenic molecule 5-bromo-2-hydroxy-N'-[(1E)-1-(thiophen-2-yl)ethylidene]benzohydrazide (L) has been successfully designed and synthesized. The sensing studies of L demonstrated a ratio metric as well as turn-on-enhanced fluorescence and colorimetric response toward Fe3+ and Cu2+ ions, respectively and it was observed to be insensitive toward various metal ions. The Job plots revealed that the binding stoichiometry of L and metal ions is 2 : 1. In addition, density functional theory (DFT) results strongly suggested that L can be used as a powerful colorimetric sensor for the detection of Cu2+ ions. In vitro antimicrobial activities of L were evaluated by disk diffusion and results revealed good antibacterial activities against E. coli. Further, molecular docking was executed with DNA gyrase (PDB ID: 1KZN) of E. coli and the calculated interaction energy value was found to be -7.7 kcal mol-1. Finally, molecular docking, fluorescence, colorimetry and the HOMO-LUMO energy gap of the compound can provide new insights into developing drugs and detecting metals in biomolecules.
Collapse
Affiliation(s)
| | | | - William Emmanuel Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Adams Abdullahi
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | | | - Md Mayez Mahmud
- Tokushima University, Faculty of Pharmaceutical Science Tokushima Shi 770-0026 Japan
| | - Md Aminul Haque
- Department of Chemistry, Jagannath University Dhaka-1100 Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
2
|
Srivastava A, Kumar G, Kumar P, Srikrishna S, Singh VP. Quinazoli-4-one ionic liquid as a fluorescent sensor for NH 3 detection: Interaction with ctDNA, theoretical investigation and live cell bioimaging. Int J Biol Macromol 2023; 235:123832. [PMID: 36842738 DOI: 10.1016/j.ijbiomac.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
A novel quinazoli-4-one based ionic liquid, 1-(3-aminopropyl)-3-methyl-4-oxo-3,4-dihydroquinazolin-1-ium bromide (QIL) for fluorometric determination of dissolved ammonia has been successfully synthesized and characterized by spectroscopic techniques such as 1H and 13C NMR, FTIR and HRMS spectrometry. In the proposed method, QIL is converted to a fluorescent derivative by the reaction with ammonia in aqueous medium. The excitation and emission wavelengths were 250 and 436 nm, respectively. Remarkably with the reaction time of >1 s, the binding constant and detection limit was found to be 6.43 × 108 M-1 and 0.73 × 10-8 M, respectively. QIL is found to be highly selective as no interference is observed from various cations, anions, organic molecules and amino acids. The sensing mechanism was further validated by the density functional theory studies. The fluorophore exhibited great sensing property in 3.0-14.0 pH range, hence, it can be employed in diverse matrices. In addition, the fluoro-sensor is highly reversible and reusable in the presence of ctDNA molecule. Moreover, a live-cell imaging study of QIL in Drosophila larval gut tissue has also been carried out to investigate the cell permeability of QIL and its efficiency for selective detection of NH3 in cellular micro environment. To show practical applicability of the fluoro-sensor, test strip kit has been constructed. A detailed comparison table has been shown to evaluate the efficiency of this method.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Bai Y, Zhang H, Yang B, Leng X. Development of a Fluorescein-Based Probe with an "Off-On" Mechanism for Selective Detection of Copper (II) Ions and Its Application in Imaging of Living Cells. BIOSENSORS 2023; 13:301. [PMID: 36979513 PMCID: PMC10046790 DOI: 10.3390/bios13030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Copper is a common metallic element that plays an extremely essential role in the physiological activities of living organisms. The slightest change in copper levels in the human body can trigger various diseases. Therefore, it is important to accurately and efficiently monitor copper ion levels in the human body. Recent studies have shown that fluorescent probes have obvious advantages in bioimaging and Cu2+ detection. Therefore, a novel Cu2+ probe (N2) was designed and synthesized from fluorescein, hydrazine hydrate and 5-p-nitrophenylfurfural that is sensitive to and can detect Cu2+ within 100 s. The response mechanism of the N2 probe to Cu2+ was studied by several methods such as Job's plots and MS analysis, which showed that the Cu2+ and the N2 probe were coordinated in a complexation ratio of 1:1. In addition, compared with other cations investigated in this study, the N2 probe showed excellent selectivity and sensitivity to Cu2+, exhibiting distinct fluorescence absorption at 525 nm. Furthermore, in the equivalent range of 0.1-1.5, there is a good linear relationship between Cu2+ concentration and fluorescence intensity, and the detection limit is 0.10 μM. It is worth mentioning that the reversible reaction between the N2 probe and Cu2+, as well as the good biocompatibility shown by the probe in bioimaging, make it a promising candidate for Cu2+ biosensor applications.
Collapse
Affiliation(s)
- Yinjuan Bai
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Hongpeng Zhang
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Bingqin Yang
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Xin Leng
- College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
- College of Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Kumar A, Virender, Mohan B, Modi K, Din MAU, Kumar S. A highly selective ratiometric and colorimetric detection of Ni2+ and Cu2+ ions using Schiff base ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Mayurachayakul P, Chantarasriwong O, Yotapan N, Kamkaew A, Mingvanish W, Srisuwannaket C, Sukwattanasinitt M, Niamnont N. Novel selective "on-off" fluorescence sensor based on julolidine hydrazone-Al 3+ complex for Cu 2+ ion: DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121382. [PMID: 35598577 DOI: 10.1016/j.saa.2022.121382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A hydrazone (T1) was synthesized by reacting 8-hydroxyjulolidine-9-carboxaldehyde with 2-furoic hydrazide and then modified with Al3+ ion to form a novel hydrazone Al3+ complex (T1-Al3+) in an aqueous solution (8% propylene glycol in 10 mM HEPES pH 5.5). The T1-Al3+ complex was studied as a Cu2+ selective sensor due to its highly efficient capacibility of paramagnetic quenching. The results showed that the T1-Al3+ complexed sensor possesses remarkable sensitivity and selectivity for Cu2+ ion in 8% propylene glycol in 10 mM HEPES pH 5.5 as compared with other tested analytes. Notably, this sensor has a broad linear detection range of 10-110 µM for Cu2+ ion and a detection limit level of 0.62 µM, which is lower than the Cu2+ concentration threshold in drinking water designated by the United States Environmental Protection Agency (EPA). Additionally, it was detectable for the presence of Cu2+ ion in mineral water and tap water samples. The selectivity of T1-Al3+ complexed sensor with Cu2+ ion could be explained by the basis of computation with Gaussian software complied with the basis sets of B3LYP/6-31 G(d,p)/LANL2DZ. Furthermore, only T1 exhibited anticancer efficacy against HeLa and U251 cells with MTT assay.
Collapse
Affiliation(s)
- Pipattra Mayurachayakul
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Oraphin Chantarasriwong
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Nattawut Yotapan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Withawat Mingvanish
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Choladda Srisuwannaket
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mongkol Sukwattanasinitt
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakorn Niamnont
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
6
|
Santiwat T, Sornkaew N, Mayurachayakul P, Srikittiwanna K, Pratumyot K, Sukwattanasinitt M, Niamnont N. A new triphenylamine-pyrenyl salicylic acid fluorophore for the detection of highly selective Cu(II) ions in an aqueous media at the picomolar level. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wang Z, Zheng C, Xu D, Liao G, Pu S. A fluorescent sensor for Zn2+ and Cd2+ based on a diarylethene derivative with an indole-2-methylhydrazone moiety. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Sharma S, Ghosh KS. Overview on recently reported fluorometric sensors for the detection of copper ion based on internal charge transfer (ICT), paramagnetic effect and aggregation induced emission (AIE) mechanisms. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|