1
|
Xia W, Li C, Zhang S, Wang X, Wang S, Yang Q, Li W, Xiong C, Huang J, Wang Q. Ho-Ion-Polymer/Graphene Heterojunctions Toward Room-Temperature Ferromagnets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300385. [PMID: 36929570 DOI: 10.1002/smll.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Organic ferromagnetic materials offer great promise for spintronic devices, carbon-based chips, and quantum communications, but remain as a challenging issue due to their low saturation magnetization and/or unsustainable ferromagnetic properties. To date, magnetic ion polymers have displayed paramagnetism without exception at room-temperature. In this study, it is reported for the first time that, owing to the structural restriction and charge exchange of Ho ion by polymer/graphene π-π stacking heterojunctions, holmium ion polymer composites exhibited typical hysteresis lines of ferromagnetic materials at room temperature. The room-temperature ferromagnetic ion polymer composite presented the highest saturation magnetization value of 3.36 emu g-1 and unprecedented sustainable ferromagnetism, compared to reported room-temperature organic ferromagnetic materials. Accordingly, prepared ferromagnetic composites also achieved impressive wave absorption properties, with a maximum reflection loss of as much as -57.32 dB and a broad absorption bandwidth of 5.05 GHz. These findings may promote the development of room-temperature organic ferromagnetic materials.
Collapse
Affiliation(s)
- Wenlai Xia
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Chenjian Li
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Shixian Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Xuelin Wang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Shan Wang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Quanling Yang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Wei Li
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Chuanxi Xiong
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
| | - Jing Huang
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Sunshine Avenue 1, Wuhan, 430200, P. R. China
| | - Qing Wang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
3
|
Li Y, Shaukat U, Schlögl S, Xue T, Li J, Nie J, Zhu X. A Pyrrole–Carbazole Photoinitiator for Radical and Cationic Visible Light LED Photopolymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Wang J, Wang Y, Liu B, Fu T. Highly photosensitive furan acrylate derivatives and their solid-state photopolymerization. NEW J CHEM 2022. [DOI: 10.1039/d2nj03138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly photosensitive multifunctional furan acrylate monomers synthesized from biomass furfural can be photopolymerized into polyesters without photoinitiators and solvents.
Collapse
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Bingchen Liu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Tao Fu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| |
Collapse
|
6
|
Xue T, Li Y, Li X, Huang B, Song Q, Nie J, Zhu X. Benzylidene ketones as visible light radical photoinitiator: The effects of electron-donating group and co-initiator. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|