1
|
Pompetti N, Smyser KE, Feingold B, Owens R, Lama B, Sharma S, Damrauer NH, Johnson JC. Tetracene Diacid Aggregates for Directing Energy Flow toward Triplet Pairs. J Am Chem Soc 2024; 146. [PMID: 38606884 PMCID: PMC11046478 DOI: 10.1021/jacs.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.
Collapse
Affiliation(s)
- Nicholas
F. Pompetti
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Kori E. Smyser
- University
of Colorado, Boulder, Colorado 80401, United States
| | | | - Raythe Owens
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Bimala Lama
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Sandeep Sharma
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Niels H. Damrauer
- University
of Colorado, Boulder, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| |
Collapse
|