1
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
2
|
Goswami N, Naithani S, Goswami T, Kumar P, Kumar P, Kumar S. Turn-on detection of Al 3+ ions using quinoline-based tripodal probe: mechanistic investigation and live cell imaging applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5022-5031. [PMID: 38979779 DOI: 10.1039/d4ay00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In this study, an easily synthesizable Schiff base probe TQSB having a quinoline fluorophore is demonstrated as a fluorescent and colorimetric turn-on sensor for Al3+ ions in a semi-aqueous medium (CH3CN/water; 4 : 1; v/v). Absorption, emission and colorimetric studies clearly indicated that TQSB exhibited a high selectivity toward Al3+, as observed from its excellent binding constant (Kb = 3.8 × 106 M-1) and detection limit (7.0 nM) values. TQSB alone was almost non-fluorescent in nature; however, addition of Al3+ induced intense fluorescence at 414 nm most probably due to combined CHEF (chelation-enhanced fluorescence) and restricted PET effects. The sensing mechanism was established via Job's plot, NMR spectroscopy, ESI-mass spectrometry, and density functional theory (DFT) analyses. Furthermore, to evaluate the applied potential of probe TQSB, its sensing ability was studied in real samples such as soil samples and Al3+-containing Digene gastric tablets as well as on low-cost filter paper strips. Fluorescence microscopy imaging experiments further revealed that TQSB can be used as an effective probe to detect intracellular Al3+ in live cells with no cytotoxicity.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C. C. S. University, Meerut, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
3
|
Maji A, Naskar R, Mitra D, Gharami S, Murmu N, Mondal TK. Fabrication of a New Coumarin Based Fluorescent "turn-on" Probe for Distinct and Sequential Recognition of Al 3+ and F - Along With Its Application in Live Cell Imaging. J Fluoresc 2023; 33:2403-2414. [PMID: 37084063 DOI: 10.1007/s10895-023-03208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
4
|
Li H, Wang Y, Jiang F, Li M, Xu Z. A dual-function [Ru(bpy) 3] 2+ encapsulated metal organic framework for ratiometric Al 3+ detection and anticounterfeiting application. Dalton Trans 2023; 52:3846-3854. [PMID: 36866710 DOI: 10.1039/d2dt03388g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In this work, a novel composite material (HPU-24@Ru) has been prepared by combining a blue-emission Cd-based metal-organic framework (MOF, [Cd2(TCPE)(DMF)(H2O)3]n, HPU-24) with a red-emission tris (2,2'-bipyridine) dichlororuthenium(II) hexahydrate ([Ru(bpy)3]2+) molecule for ratiometric fluorescence sensing of Al3+ ions in aqueous medium and high-level dynamic anticounterfeiting application. The luminescence measurement results indicated that the fluorescence intensity of HPU-24 at 446 nm showed a red shift in the presence of Al3+ ions, and the new peak appeared at 480 nm and continued to increase with an increase in Al3+ ion concentration. Meanwhile, the fluorescence intensity of [Ru(bpy)3]2+ almost showed no change. The detection limit was calculated as 11.63 μM, which was better than that for the MOF-based Al3+ ions in some reported examples in aqueous media and achieved through strong electrostatic interactions between HPU-24@Ru and Al3+ ions. Moreover, owing to the particularity of the tetrastyryl structure in HPU-24, HPU-24@Ru showed intriguing temperature-dependent emission behavior. This unique structure provides the composite material HPU-24@Ru with attributes for high-level information encryption that make it difficult for counterfeiters to identify all of the right decryption measures.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Yanan Wang
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Fengjiao Jiang
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Manman Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| |
Collapse
|
5
|
Sharma S, Chayawan, Jayaraman A, Debnath J, Ghosh KS. Highly Selective Aminopyrazine‐Based Colorimetric Probe for “Naked‐Eye” Detection of Al
3+
: Experimental, Computational Studies and Applications in Molecular Logic Circuits. ChemistrySelect 2023. [DOI: 10.1002/slct.202203695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| | - Chayawan
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| | - Adithyan Jayaraman
- School of Chemical and Biotechnology SASTRA Deemed to be University Thanjavur Tamilnadu 613401 India
| | - Joy Debnath
- Department of Chemistry SASTRA Deemed to be University Thanjavur Tamilnadu 613401 India
| | - Kalyan Sundar Ghosh
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| |
Collapse
|
6
|
Xu H, Zhang S, Zhang C, Wang Y, Chen X. A new chromone functionalized isoqunoline derived chemosensor with fluorogenic switching effect for selective detection of Zn 2+ in real water samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121697. [PMID: 35985162 DOI: 10.1016/j.saa.2022.121697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, a selective chemosensor, (E)-N'-((4-oxo-4H-chromen-3-yl)methylene)isoquinoline-1-carbohydrazide (ENO), was rationally developed for colorimetric and fluorogenic detection of Zn2+ ions. It was readily synthesized from 4-oxo-4H-chromene-3-carbaldehyde and isoquinoline-1-carbohydrazide via one-step Schiff reaction. ENO exhibited excellent fluorescent response performances toward Zn2+ over a wide pH range in EtOH/H2O media, including a distinguished color change from colorless to gold, a low limit of detection (LOD) value (34 nM), strong complexation ability (1.36 × 105 M-1) and rapid identification (2 min). The sensing mechanism of ENO toward Zn2+ was proposed on the basis of the chelation-enhanced fluorescence (CHEF) process, which was further supported by IR studies and the density functional theory (DFT) calculation. Moreover, ENO presented here demonstrated outstanding capability in monitoring trace level of Zn2+ ions in real water samples, living cells as well as the on-site assay kit.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Chengfang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Yadav P, Laddha H, Sharma M, Agarwal M, Singh Kushwaha H, Gupta R. Selective and sensitive investigation of aluminium contamination from cookware based on novel water-soluble fluorescence turn-on chemosensor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Zhang S, Wang Y, Xu H. A new naphthalimide-picolinohydrazide derived fluorescent "turn-on" probe for hypersensitive detection of Al 3+ ions and applications of real water analysis and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121193. [PMID: 35364410 DOI: 10.1016/j.saa.2022.121193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The development of high-selective chemosensors for trace Al3+ detection in the ecosystem is crucially importance due to its detrimental effects. In this work, a simple Schiff-base fluorescent probe NPP derived from naphthalimide and picolinohydrazide was rationally designed and prepared for efficient detection of Al3+. NPP exhibited prominent sensing behaviors toward Al3+ with low detection limit (LOD) (39 nM), rapid response time (1 min), strong binding affinity (4.02 × 104), good anti-interference characteristics and visual detection. Binding ratio of NPP-Al3+ complex was determined to be 1:1 by Job's plot analysis. In addition, the chelation mechanism of NPP with Al3+ ions was proposed and substantiated by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), IR spectrum and 1H NMR titration experiments. Furthermore, this "signal-on" probe NPP was efficiently utilized as a promising indicator for Al3+ detection in environmental and biological samples.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
9
|
Yan L, Yang H, Liu N, Meng F, Zhang S. A photochromic salicylaldehyde hydrazone derivative based on CN isomerization and ESIPT mechanisms and its detection of Al 3+ in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121116. [PMID: 35316626 DOI: 10.1016/j.saa.2022.121116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A simple photochromic Schiff base was successfully prepared by the condensation of salicylaldehyde and benzoyl hydrazine. This compound has reversible photochromic properties based on isomerization and ESIPT mechanisms. In organic solvents, after irradiation with 365 nm UV light for 2 min, the absorption peak at 367 nm of the compound showed a significant decrease, while a double absorption peak appeared at 418 nm and 438 nm, accompanied by a significant change of the solution color from colorless to yellow. The compound can also complex with Al3+ at the molar ratio of 2:1 in the water solution (acetonitrile/water, v/v, 1:99), resulting in significantly enhanced fluorescence of the compound, so as to achieve fluorescence detection of Al3+ in living cells and water samples.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China.
| | - Hong Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Nan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Fengjuan Meng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Shiqing Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| |
Collapse
|
10
|
Xu H, Zhang S, Gu Y, Lu H. Naphthalimide appended isoquinoline fluorescent probe for specific detection of Al 3+ ions and its application in living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120364. [PMID: 34520897 DOI: 10.1016/j.saa.2021.120364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Herein, a novel Schiff base fluorescent probe NIQ based on naphthalimide and iso-quinoline units has been readily prepared for the selective detection of Al3+ ions. The obviously visible color changes and prominent fluorescence enhancement were observed upon the addition of Al3+ to NIQ, which could be attributed to the complexation of NIQ with Al3+ and thus leading to the inhibition of photo-induced electron transfer (PET) and the chelation-enhanced fluorescence (CHEF) progress. The limit of detection (LOD) was 52 nM that was far below the standard recommended by the WHO. Binding ratio (1:1) of NIQ with Al3+ ions was supported by Job's plot. The binding constant of NIQ for Al3+ were calculated to be 3.27 × 105 M-1 on the basis of benesi-Hildebrand plot. The plausible binding mechanism for NIQ towards Al3+ ions was evidenced by the density functional theory (DFT) and 1H NMR titration experiment. Furthermore, this "turn-on" probe NIQ has been successfully applied as a biomarker for imaging the Al3+ ions in living cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
11
|
Zhang S, Gu Y, Shi Z, Lu N, Xu H. A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al 3+) and fluoride (F -) ions and its applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5360-5368. [PMID: 34730585 DOI: 10.1039/d1ay01545a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new Schiff base fluorescent probe NBP derived from the one-step condensation strategy of 2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-5-carbaldehyde and N-(2-(hydrazinecarbonyl)phenyl)benzamide was synthesized and characterized. NBP exhibited high selectivity toward Al3+ along with naked-eye color changes and prominent fluorescence enhancement. The limit of detection (LOD) of NBP toward Al3+ was detected to be 80 nM. The binding ratio of NBP with Al3+ ions was obtained as 1 : 2 on the basis of Job's plot with the association constant Ka value of 4.22 × 1010 M-1/2. The plausible complexation mechanism of NBP toward Al3+ ions was validated by the density functional theory (DFT) and IR spectrum. In addition, in situ formed "NBP + Al3+" could be utilized as the second sensor for selective recognition of F-via fluorescence quenching with a low detection limit (44 nM). Furthermore, the cell imaging experiments of probe NBP in HeLa cells have successfully demonstrated that NBP could serve as an indicator for monitoring Al3+ ions in living cells. On top of that, NBP could be used to prepare simple test paper strips for quickly and qualitatively detecting a trace amount of Al3+ ions in a visible manner.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Zongqian Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Nan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
12
|
Choe D, Kim C. An Acylhydrazone-Based Fluorescent Sensor for Sequential Recognition of Al 3+ and H 2PO 4. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6392. [PMID: 34771920 PMCID: PMC8585233 DOI: 10.3390/ma14216392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
A novel acylhydrazone-based fluorescent sensor NATB was designed and synthesized for consecutive sensing of Al3+ and H2PO4-. NATB displayed fluorometric sensing to Al3+ and could sequentially detect H2PO4- by fluorescence quenching. The limits of detection for Al3+ and H2PO4- were determined to be 0.83 and 1.7 μM, respectively. The binding ratios of NATB to Al3+ and NATB-Al3+ to H2PO4- were found to be 1:1. The sequential recognition of Al3+ and H2PO4- by NATB could be repeated consecutively. In addition, the practicality of NATB was confirmed with the application of test strips. The sensing mechanisms of Al3+ and H2PO4- by NATB were investigated through fluorescence and UV-Visible spectroscopy, Job plot, ESI-MS, 1H NMR titration, and DFT calculations.
Collapse
Affiliation(s)
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 136-742, Korea;
| |
Collapse
|
13
|
Mohan B, Modi K, Patel C, Kumar S, Zhiyu T, You H, Ren P. A new N-methylhydrazinecarbothioamide incorporated “naked-eye” and “turn-off” chemosensor for selective and low detection of Cu2+ ions and computation study. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|