1
|
Leslee DBC, Karuppannan S. A Ratiometric Green Fluorescent Carbazole-Bis(hydrazinobenzothiazole) Probe for the Selective Detection of Toxic Hg 2+ Ions in Real Water Samples. Chempluschem 2024; 89:e202400203. [PMID: 38728531 DOI: 10.1002/cplu.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
A dyad Carbazolyl-bis(hydrazinobenzothiazole) was designed to form a symmetrical structure that containing two-arm active binding sites facilitates coordination with Hg2+ ion. This sensor has imparted a colorimetric and fluorometric changes in presence of Hg2+ ions. The ligand showed a selective blue shift in presence of Hg2+even in co-existence with heavy metal ions with luminescence change from colorless to blue and colorless to green under day light. Enhanced Intramolecular charge transfer process is responsible for fluorescence transformation when ligand interacts with Hg2+ ion. The emission spectra showed a ratiometric response to increasing addition of Hg2+ ions. The sensor is capable of detecting above the lower concentration of 6.8025×10-8 M. The fluorescence efficiency of CBT-2 with Hg2+ ion is quite stable under different co-metal ions and wide range of pH 6 to 9. The sensor CBT-2 forms a 1 : 1 stoichiometric complex with Hg2+ ions and the binding nature is confirmed from the 1H-NMR, FTIR, and mass spectroscopic studies. The sensor CBT-2 and its Hg2+ complex possess good binding nature to protein in Bovine Serum Albumin which could be good in biological applications. Additionally, wedevelop a practical application in real water sample analysis and electrochemical detection via oxidation potential discrimination.
Collapse
Affiliation(s)
- Denzil Britto Christopher Leslee
- Department of Science and Humanities (Chemistry), Anna University -, University College of Engineering, Dindigul, 624622, Tamil Nadu, India
| | - Sekar Karuppannan
- Department of Science and Humanities (Chemistry), Anna University -, University College of Engineering, Dindigul, 624622, Tamil Nadu, India
| |
Collapse
|
2
|
Chutia A, Arandhara PJ, Saikia AK. Synthesis of Highly π-Extended Dihydrobenzo[ a]indenocarbazole Scaffolds via Tandem Benzannulation and Friedel-Crafts Reaction of 2-Alkynylanilines and 2-Alkynylbenzaldehydes Promoted by Lewis Acid. J Org Chem 2024; 89:11542-11557. [PMID: 39054636 DOI: 10.1021/acs.joc.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A novel and efficient tandem protocol for the swift synthesis of dihydrobenzo[a]indenocarbazole frameworks from 2-alkynylanilines and 2-alkynylbenzaldehydes via BF3·OEt2-facilitated benzannulation and Friedel-Crafts reaction has been described. This innovative approach accommodates a wide array of functional groups, offering a myriad of diversified carbazole products. Later, postsynthetic modification leads to its C(sp3)-H hydroxylation. Furthermore, the photophysical properties of some selected synthesized moieties have been meticulously investigated, promising exciting avenues for further exploration.
Collapse
Affiliation(s)
- Archana Chutia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Zhang C, Nie S, Liu C, Zhang Y, Guo J. A Fluorescent Probe for Hg 2+ Specific Recognition Based on Xanthene and its Application in Food Detection and Cell Imaging. J Fluoresc 2024:10.1007/s10895-024-03711-y. [PMID: 38652359 DOI: 10.1007/s10895-024-03711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The mercury-loving unit aminothiourea was introduced into the xanthene fluorophore to synthesized the probe molecule NXH. NXH has a specific response to Hg2+, and with the addition of (0 ~ 50 µM) Hg2+, the fluorescence intensity of the probe solution was quenched from 2352 a.u. to about 308 a.u. NXH exhibited excellent detection performance of high sensitivity (LOD = 96.3 nM), real-time response (105 s), wide pH range (2.1 ~ 9.3), and strong anti-interference ability for Hg2+. At the same time, NXH has wide range of applications for Hg2+ detection, which can fluorescence imaging of Hg2+ in Hela cells and tea samples, and can also be made into Hg2+ detection test paper.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|
4
|
Tamizhselvi R, Bhaskar R, Ashok Kumar SK, Mohandoss S, Lee YR, Napoleon AA. Functionalized 2-Hydrazinobenzothiazole with Bithiophene as a Colorimetric Sensor for Lethal Cyanide Ions and Its Application in Food Samples. ACS OMEGA 2024; 9:11223-11231. [PMID: 38496985 PMCID: PMC10938305 DOI: 10.1021/acsomega.3c06057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 03/19/2024]
Abstract
A newly synthesized Schiff's base 2-(2-([2,2'-bithiophen]-5-ylmethylene)hydrazinyl)benzothiazole (BT) was obtained from the condensation reaction between 2-hydrazinobenzothiazole and 2,2-bithiophene-5-carboxaldehyde. The prepared probe BT was subjected to a confirmation of the structural arrangement through NMR, FTIR, ESI-HRMS, and single-crystal XRD spectral analysis. The BT colorimetric sensor showed selectivity and sensitivity toward the cyanide (CN-) ion over other common anions such as ClO4-, Cl-, Br-, F-, I-, NO2-, OH-, HSO4-, and H2PO4- in a partial aqueous system CH3CN/H2O (8:2, v/v). The probe BT detects CN- with the lowest detection range as low as 1.33 × 10-8 M (3.59 ppm); in comparison to that given by WHO guidelines, it is significantly lower. The stoichiometric interaction between the probe BT and analyte CN- was found to be 1:1 (BT/CN-) binding mode using Jobs plot, and further association binding affinity was calculated to be 6.64 × 10-3 M-1. Additionally, these results were further supported by the FTIR and DFT calculations, as well as the 1H NMR titration analysis, which complemented the binding data. The sensor probe BT was successfully employed in a cotton swab test kit approach and also in smartphone-assisted applications for the determination of CN- ions. Finally, the outstanding sensing properties of probe BT aided the quantitative detection of CN- ions, and it could be further applied to a variety of food samples, including apple seeds, sprouting potatoes, and cassava.
Collapse
Affiliation(s)
| | - Rangaswamy Bhaskar
- Department
of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamilnadu, India
| | | | - Sonaimuthu Mohandoss
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic
of Korea
| | - Yong Rok Lee
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic
of Korea
| | | |
Collapse
|
5
|
Musikavanhu B, Liang Y, Xue Z, Feng L, Zhao L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023; 28:6960. [PMID: 37836803 PMCID: PMC10574220 DOI: 10.3390/molecules28196960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and heavy metal cations. The paper explores a range of strategies, including functional group variations, structural modifications, and the integration of nanomaterials or auxiliary receptors, to amplify the efficiency of these chemosensors. By improving selectivity towards targeted cations and achieving heightened sensitivity and detection limits, consequently, these strategies contribute to the advancement of accurate and efficient detection methods while increasing the range of end-use applications. The findings discussed in this review offer valuable insights into the potential of leveraging Schiff base fluorescent chemosensors for the accurate and reliable detection and monitoring of heavy metal cations in various fields, including environmental monitoring, biomedical research, and industrial safety.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China;
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| |
Collapse
|
6
|
Kaewnok N, Kraithong S, Mahaveero T, Maitarad P, Sirirak J, Wanichacheva N, Swanglap P. Silver nanoparticle incorporated colorimetric/fluorescence sensor for sub-ppb detection of mercury ion via plasmon-enhanced fluorescence strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Carbazole‐based dual‐functional chemosensor: Colorimetric sensor for Co
2+
and fluorescent sensor for Cu
2+
and its application. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Vineetha PK, Krishnan A, Aswathy A, Chandrasekaran PO, Manoj N. Pyran based bipodal D–π–A systems: colorimetric and ratiometric sensing of mercury – experimental and theoretical approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01167g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible and selective Hg2+ ion complexation of the two pyran based colorimetric and fluorescent ratiometric probes.
Collapse
Affiliation(s)
- Pookalavan Karicherry Vineetha
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Aravind Krishnan
- Department of Chemistry, St.Berchman's College, Changanassery – 686101, Kerala, India
| | - Ajayakumar Aswathy
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Parvathy O. Chandrasekaran
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Narayanapillai Manoj
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| |
Collapse
|