1
|
Gu Y, Qin W, Xu H, Liu YG. A simple chromone-derived fluorescent "Turn-on" probe for accurate detection of Al 3+ Ions: Applications in food Analysis, test strips and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125583. [PMID: 39689549 DOI: 10.1016/j.saa.2024.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
To address the toxicity concerns of aluminum ions (Al3+) due to their widespread environmental presence, a novel chromone-derived fluorescent probe, (E)-N'-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide (NMA), was developed for dual-mode detection combining colorimetric and fluorometric channels. Upon chelation with Al3+ in a 1:1 stoichiometric ratio, NMA exhibited a significant fluorescence enhancement at 510 nm, accompanied by a rapid and visible color change due to the chelation-enhanced fluorescence (CHEF) effect, achieving an exceptional detection limit of 9 nM-well below the World Health Organization's recommended threshold. The reversible binding of NMA, demonstrated through sequential addition of Al3+ and EDTA, enabled the construction of an INHIBIT molecular logic gate, broadening its potential for smart sensing applications. Structural interactions and selectivity were confirmed through 1H NMR, FT-IR spectroscopy, and density functional theory (DFT) calculations. NMA proved highly effective in diverse applications, including detecting Al3+ in food samples, bioimaging in living cells, and environmental monitoring via smartphone-assisted platforms and test strips, making it a powerful tool for addressing aluminum toxicity in practical and real-time settings.
Collapse
Affiliation(s)
- Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Wenlong Qin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Ying-Guo Liu
- Henan Institute of Advanced Technology, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Chibac-Scutaru AL, Roman G. Fluorescence sensing of metal ions in solution using a morpholine-containing phenolic Mannich base of 1'-hydroxy-2'-acetonaphthone. RSC Adv 2024; 14:38590-38604. [PMID: 39650841 PMCID: PMC11622784 DOI: 10.1039/d4ra07200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
A phenolic Mannich base derived from 1'-hydroxy-2'-acetonaphthone (HAN) as a substrate and morpholine as an amine reagent was synthesized and structurally characterized. The sensing ability toward various metal ions of the s-, p- and d-block of this molecule that has the binding site for metal ions in the starting ortho-hydroxyphenone preserved was examined. Interaction between this phenolic Mannich base and Al3+, Cr3+, Cu2+ and Co2+ leads to modifications of the sensing molecule's absorption spectrum. Fluorescence spectroscopy showed that Al3+ acts as a fluorescence enhancer, whereas Cu2+ functions as a fluorescence quencher for the aminomethylated derivative. The phenolic Mannich base may be employed either as a sensitive "turn-on" chemosensor for Al3+ or as a sensitive "turn-off" chemosensor for Cu2+. However, in the presence of these ions at identical concentrations, the Mannich base becomes a selective chemosensor for Al3+. The sensing ability of this phenolic Mannich base toward rare earth ions showed that Eu3+, Dy3+ and Gd3+ induce changes in the absorption spectrum of the Mannich base. Fluorescence spectroscopy showed that the response of the sensing molecule toward Eu3+ and Dy3+ is weak, and this phenolic Mannich base may be used as a "turn-off" chemosensor for these two lanthanide ions only in a narrow concentration range (1-16 × 10-5 M).
Collapse
Affiliation(s)
- Andreea Laura Chibac-Scutaru
- Petru Poni Institute of Macromolecular Chemistry, Department of Polyaddition and Photochemistry Iaşi 700487 Romania
| | - Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers Iaşi 700487 Romania
| |
Collapse
|
3
|
Lv C, Hu B, Tao Y. A Novel AIE-Active Salicylaldehyde-Schiff Base Probe with Carbazole Group for Al 3+ Detection in Aqueous Solution. J Fluoresc 2024:10.1007/s10895-024-03859-7. [PMID: 39133442 DOI: 10.1007/s10895-024-03859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
A donor-acceptor Schiff-base fluorescent probe BKS with chelation enhanced fluorescence (CHEF) mechanism was designed and synthesized via benzophenone(Acceptor), salicylaldehyde and carbazole(Donor) for Al3+ detection, which exhibited typical aggregation-induced emission (AIE) characteristic. BKS probe could provide outstanding selectivity to Al3+ with a prominent fluorescence "turn-on" at 545 nm in a wide pH range from 2 to 11. By the Job's plot, the binding stoichiometry ratio of probe BKS to Al3+ was determined 1:1. The proposed strategy offered a very low limit of detection at 1.486 µM in THF/H2O(V/V = 1:4, HEPBS = 10 mM, pH = 7.40), which was significantly lower than the standard of WHO (Huang et al., Microchem J 151:104195, 2019)-(Yongjie Ding et al., Spectrochim Acta Mol Biomol Spectrosc 167:59-65, 2021) guidelines for drinking water. BKS probe could provide a wider linear detection range of 50 to 500 µM. Furthermore, the probe could hardly be interfered by other examined metal ions. The analysis of Al3+ in real water samples with appropriate recovery (100.72 to 102.85) with a relative standard deviation less than 2.82% indicated the accuracy and precision of BKS probe and the great potential in the environmental monitoring of Al3+.
Collapse
Affiliation(s)
- Chenyan Lv
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China
| | - Bowen Hu
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China.
| | - Yong Tao
- Research and development department, Hunan Langsai technology company, Yueyang, Hunan Province, 414006, PR China.
| |
Collapse
|
4
|
Xiao G, Ji X, Ji J, Li G, Yang G, Wang Y. A ratiometric fluorescent chemodosimeter based on a hydrolysis reaction for the superwide continuous range detection of water in MeOH, MeCN, and DMF. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Chen R, Li Q, Xu K, Ma J, Mu X, Wang T, Cao L, Teng B. Solvent conditions effect on the excited state intramolecular proton transfer mechanism and photophysical property of 1′-hydroxy-2′-acetonaphthone: A DFT/TD-DFT analysis. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Fu Y, Si H, Chen J, Zhang W, Feng S, Xiao Z. A Novel “Turn‐On” Fluorescent Sensor for Screening Triplex DNA Binder Based upon Molecular Beacon. ChemistrySelect 2022. [DOI: 10.1002/slct.202203178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanxiang Fu
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Hengdan Si
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Juan Chen
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Wenjuan Zhang
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Shuang Feng
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Zhiyou Xiao
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| |
Collapse
|
7
|
pH tolerant metal ion controlled luminescence behaviour of supramolecular assembly and its application in bioimaging and supramolecular logic gate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
A New High Selective and Sensitive Fluorescent Probe for Al3+ based on Photochromic Salicylaldehyde Hydrazyl Diarylethene. J Fluoresc 2022; 32:2213-2222. [DOI: 10.1007/s10895-022-03020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
|
10
|
Zhang S, Wang Y, Xu H. A new naphthalimide-picolinohydrazide derived fluorescent "turn-on" probe for hypersensitive detection of Al 3+ ions and applications of real water analysis and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121193. [PMID: 35364410 DOI: 10.1016/j.saa.2022.121193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The development of high-selective chemosensors for trace Al3+ detection in the ecosystem is crucially importance due to its detrimental effects. In this work, a simple Schiff-base fluorescent probe NPP derived from naphthalimide and picolinohydrazide was rationally designed and prepared for efficient detection of Al3+. NPP exhibited prominent sensing behaviors toward Al3+ with low detection limit (LOD) (39 nM), rapid response time (1 min), strong binding affinity (4.02 × 104), good anti-interference characteristics and visual detection. Binding ratio of NPP-Al3+ complex was determined to be 1:1 by Job's plot analysis. In addition, the chelation mechanism of NPP with Al3+ ions was proposed and substantiated by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), IR spectrum and 1H NMR titration experiments. Furthermore, this "signal-on" probe NPP was efficiently utilized as a promising indicator for Al3+ detection in environmental and biological samples.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
11
|
Zhang H, Li Z, Liu J, Wang Y. Effect of intermolecular hydrogen bonds on the proton transfer and fluorescence characteristics of 1′-hydroxy-2′-acetonaphthone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Xu H, Zhang S, Gu Y, Lu H. Naphthalimide appended isoquinoline fluorescent probe for specific detection of Al 3+ ions and its application in living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120364. [PMID: 34520897 DOI: 10.1016/j.saa.2021.120364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Herein, a novel Schiff base fluorescent probe NIQ based on naphthalimide and iso-quinoline units has been readily prepared for the selective detection of Al3+ ions. The obviously visible color changes and prominent fluorescence enhancement were observed upon the addition of Al3+ to NIQ, which could be attributed to the complexation of NIQ with Al3+ and thus leading to the inhibition of photo-induced electron transfer (PET) and the chelation-enhanced fluorescence (CHEF) progress. The limit of detection (LOD) was 52 nM that was far below the standard recommended by the WHO. Binding ratio (1:1) of NIQ with Al3+ ions was supported by Job's plot. The binding constant of NIQ for Al3+ were calculated to be 3.27 × 105 M-1 on the basis of benesi-Hildebrand plot. The plausible binding mechanism for NIQ towards Al3+ ions was evidenced by the density functional theory (DFT) and 1H NMR titration experiment. Furthermore, this "turn-on" probe NIQ has been successfully applied as a biomarker for imaging the Al3+ ions in living cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
13
|
Zhang S, Gu Y, Shi Z, Lu N, Xu H. A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al 3+) and fluoride (F -) ions and its applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5360-5368. [PMID: 34730585 DOI: 10.1039/d1ay01545a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new Schiff base fluorescent probe NBP derived from the one-step condensation strategy of 2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-5-carbaldehyde and N-(2-(hydrazinecarbonyl)phenyl)benzamide was synthesized and characterized. NBP exhibited high selectivity toward Al3+ along with naked-eye color changes and prominent fluorescence enhancement. The limit of detection (LOD) of NBP toward Al3+ was detected to be 80 nM. The binding ratio of NBP with Al3+ ions was obtained as 1 : 2 on the basis of Job's plot with the association constant Ka value of 4.22 × 1010 M-1/2. The plausible complexation mechanism of NBP toward Al3+ ions was validated by the density functional theory (DFT) and IR spectrum. In addition, in situ formed "NBP + Al3+" could be utilized as the second sensor for selective recognition of F-via fluorescence quenching with a low detection limit (44 nM). Furthermore, the cell imaging experiments of probe NBP in HeLa cells have successfully demonstrated that NBP could serve as an indicator for monitoring Al3+ ions in living cells. On top of that, NBP could be used to prepare simple test paper strips for quickly and qualitatively detecting a trace amount of Al3+ ions in a visible manner.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Zongqian Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Nan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|