1
|
Wei BY, Chi XH, Yue ZM, Miao JY, Zhao BX, Lin ZM. Two "turn on" fluorescence probes based on nitroso recognition group for detecting hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125021. [PMID: 39236571 DOI: 10.1016/j.saa.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide is a vital signaling molecule which holds a pivotal position in numerous biological functions. In this research, two novel "OFF-ON" fluorescence probes named YNO and TNO were designed based on the nitroso recognition group to detect H2S. Both YNO and TNO performed outstanding response rate and linear relationship between the fluorescence intensity and the concentration of H2S. YNO possessed larger Stokes shift and longer emission wavelength. TNO had lower limit of detection. In addition, YNO was successful applied to sense endogenous and exogenous H2S and target endoplasmic reticulum (ER) in Hela cells.
Collapse
Affiliation(s)
- Bing-Yu Wei
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Xiao-Hui Chi
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhen-Ming Yue
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun-Ying Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
2
|
Shi J, Tan H, Wang Z, Yang X, Rao X, Zhao P, Jiang Q. Phenanthroimidazole-based fluorescence probe for discriminative detecting of hydrazine and bisulfite and its applications in environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124747. [PMID: 38959694 DOI: 10.1016/j.saa.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Hydrazine (N2H4) and bisulfite (HSO3-) detection methods are urgently needed due to its harmful to the human health and environment safety. Herein, we reported a dual-response fluorescence probe EPC, which is capable of sequential detection of N2H4 and HSO3- by two different fluorescence signals. The probe EPC itself showed yellow florescence. In presence of N2H4, probe EPC exhibited an obviously fluorescence change (from yellow to green). However, a new addition product came into being after probe EPC mixed with HSO3-, followed with weak yellow emission. More important, probe EPC exhibited excellent fluorescence response properties for N2H4 and HSO3-, such as high sensitivity (0.182 µM for N2H4, 0.093 µM for HSO3-), rapid response (55 s for N2H4, 45 s for HSO3-), excellent selectivity and anti-interference performance. The sensing mechanisms for N2H4 and HSO3- were proved by 1H NMR and MS spectra. Practical applications were studied. EPC based test paper can be utilized for quantitative detecting N2H4 in actual water samples. And, probe EPC has been successfully applied to recognize N2H4 contaminant in soil samples. Moreover, EPC has great potential to be used to detect HSO3- in real food samples.
Collapse
Affiliation(s)
- Jiajun Shi
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Haoxue Tan
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Zhonglong Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xiaoqin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
3
|
Shang X, Liu B, Liu L, Wang J, Wang Y. Difunctional Fluorescent Probes for Iron and Hydrogen Sulfide Detection Based on Diphenyl Derivative. J Fluoresc 2024; 34:1269-1278. [PMID: 37526873 DOI: 10.1007/s10895-023-03374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
In order to better monitor the content of Fe3+ and H2S in the biological environment, two new fluorescent probes were designed and synthesized. With the addition of Fe3+, the strong fluorescence emission of two probes was significantly quenched due to the paramagnetic effect of Fe3+. With the further addition of S2-, the fluorescence intensity was quickly restored. Two probes showed high selectivity and strong sensitivity for the detection of Fe3+ and S2-, and the fluorescence intensity "ON-OFF-ON" was accompanied with the interaction process. At the same time, two probes displayed good anti-interference ability which was not interfered by the existence of other ions. In addition, two probes illustrated fast response time to Fe3+, S2- and small cytotoxicity to cells. Therefore, two probes can provide a potential ideal tool for detecting Fe3+ and H2S in organisms and the environment.
Collapse
Affiliation(s)
- Xuefang Shang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Bingqing Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lixia Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia Wang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yingling Wang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| |
Collapse
|
4
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
5
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
6
|
Development of dual-fluorophore and dual-site multifunctional fluorescent probe for detecting HClO and H2S based on rhodamine-coumarin units. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Duan N, Yang S. Research Progress on Multifunctional Fluorescent Probes for Biological Imaging, Food and Environmental Detection. Crit Rev Anal Chem 2022; 54:775-817. [PMID: 35849642 DOI: 10.1080/10408347.2022.2098670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There has been rapid progress in the development of fast, sensitive, cheap and low-cytotoxicity micro-molecule fluorescent probes for application in various fields, including disease diagnosis, food safety and environmental safety. As an analytical tool, dual-function fluorescent probes with dual-emission responses have attracted considerable attention due to their cost-effectiveness and efficiency over single-function sensors. This review primarily describes research progress on multifunctional probes in terms of the reaction type and coordination type, as well as the general design principles of probes. The analytes include reactive oxygen species (ROS), reactive sulfur species (RSS), harmful cations and anions, etc. Multifunctional probes for food, medical and environmental applications are listed for future research. To improve the development of rapid detection methods, trends and strategies in the development of multifunctional fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|