1
|
Kaewnok N, Chailek N, Thavornpradit S, Wangngae S, Petdum A, Panchan W, Kamkaew A, Sirirak J, Sooksimuang T, Sanmanee N, Maitarad P, Wanichacheva N. Propargylic-linked [5]helicene derivative for selective Au 3+ detection in near-perfect aqueous media with applications in diverse real samples, paper test strips, and human cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125594. [PMID: 39700548 DOI: 10.1016/j.saa.2024.125594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Gold is classified as a heavy metal, and its ion (Au3+) can manifest adverse impacts on ecological and human health. Thus, an effective method for Au3+ detection is highly required. In this work, a new [5]helicene-based fluorescence sensor (M202P) was synthesized and applied for Au3+ monitoring in near-perfect aqueous media. M202Prapidly detected Au3+ through a fluorescence quenching response and furnished a large Stokes shift of 157 nm. The Au3+ sensing ability of M202P allowed it to withstand interference from other metal ions, with a detection limit for Au3+ of 8.0 ppb. The mechanism underlying its Au3+ detection was the coordination of Au3+ with the alkyne and carbonyl oxygen, leading to the later hydration of alkynyl moiety, as thoroughly proven by FTIR, 1H NMR, 13C NMR, and HRMS, with the stoichiometric ratio of 1:1 according to Job's plot. In addition, M202P can be used for the quantitative analysis and qualitative fluorescence assay of Au3+ levels in environmental waters and fertilizer solutions. This sensor also demonstrated high potential as a fluorescence tracking agent in human cells and was utilized in fabricating a paper test strip.
Collapse
Affiliation(s)
- Nirawit Kaewnok
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nirumon Chailek
- Somdejya demonstration community school, Srinakharinwirot University, Maechaem, Chiang Mai 50270, Thailand
| | - Sopida Thavornpradit
- Division of Chemistry, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anuwut Petdum
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Natdhera Sanmanee
- Department of Environmental Science, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science & Technology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Yuan X, Yao W, Ji D, Liu L, Lin Y, Zeng H, Jin T, Xu K, Du G, Zhang L. Synthesis of corn bract cellulose-based Au 3+ fluorescent probe and its application in composite membranes. Int J Biol Macromol 2023; 242:124600. [PMID: 37105254 DOI: 10.1016/j.ijbiomac.2023.124600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
To achieve real-time monitoring of Au3+, a corn bract cellulose-based fluorescent probe MAC-1 for was synthesized. MAC-1 showed good fluorescence properties in DMF-H2O (1:9, v/v, pH = 7.4) solution, showed a fluorescence emission peak at 520 nm with quenching fluorescence properties for Au3+. The structure of MAC-1 was analyzed by SEM (Sample microstructure images), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), 1H NMR, Elemental analysis, EDS, Mapping and TG (Thermogravimetry) were analyzed. The fluorescence properties of the probe were also characterized by UV spectrophotometer and fluorescence spectrophotometer. The results showed that the recognition of Au3+ by the probe MAC-1 exhibited high selectivity and high sensitivity. Moreover, it is highly resistant to interference and has a short response time, which can be rapidly responded within 1 min. In addition, to improve the practical application of the probe, the probe was prepared as a fluorescent composite film and the fluorescence effect shown by the fluorescent composite film is consistent with the fluorescence change of the probe MAC-1 itself. The fluorescent composite film also has excellent selectivity and good overall physical and mechanical properties. This study provides a meaningful reference for the detection of Au3+ and further expands the application field of agroforestry waste.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Wentao Yao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
3
|
Dey B, Pahari P, Sahoo SK, Kumar Atta A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|