1
|
Deng L, Xue L, Gao Y, Fu S, Wang H. A coumarin based ratiometric fluorescent probe for the detection of Cu 2+ and mechanochromism as well as application in living cells and vegetables. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123479. [PMID: 37806239 DOI: 10.1016/j.saa.2023.123479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
In this paper, a novel coumarin-derived fluorescent probe NY was designed and synthesized. NY displayed a significant ratiometric fluorescence response towards Cu2+ in PBS buffer (10 mM, pH = 7.4), with the emission wavelength blue-shifted from 580 to 495 nm, and a fluorescence change from orange to green was evident under a 365 nm UV light. Meanwhile, NY had the advantages of high selectivity, short response time (5 min), low detection limit (1.3 × 10-8 M) and large binding constant (1.45 × 105 M-1) towards Cu2+. The binding mechanism between NY and Cu2+ was elucidated by FT-IR, 1H NMR titration, TOF-MS and Job's plot analysis. In addition, NY was successfully employed in the detection of Cu2+ within environmental water and vegetable samples with satisfactory results. Laser confocal microscopy imaging results showed that NY could easily penetrate HeLa cells membrane to target mitochondria and image Cu2+ in living cells. Furthermore, NY demonstrated mechanochromic properties by exhibiting orange-red fluorescence when subjected to mechanical grinding.
Collapse
Affiliation(s)
- Linlong Deng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Lei Xue
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China; Key Laboratory of Green Catalytic Materials and Technologies of Ningxia Hui Autonomous Region, People's Republic of China
| | - Yunke Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Shuai Fu
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Haibin Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China; Key Laboratory of Green Catalytic Materials and Technologies of Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Du Y, Zhao H, Peng X, Zhou X, Yang X, Li Y, Yan M, Cui Y, Sun G. A novel phenanthroline[9,10-d] imidazole-based fluorescent sensor for Hg2+ with “turn-on” fluorescence response. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Liu L, Luo C, Zhang J, He X, Shen Y, Yan B, Huang Y, Xia F, Jiang L. Synergistic Effect of Bio-Inspired Nanochannels: Hydrophilic DNA Probes at Inner Wall and Hydrophobic Coating at Outer Surface for Highly Sensitive Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201925. [PMID: 35980948 DOI: 10.1002/smll.202201925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
During the past few decades, bio-inspired nanochannels have been well developed and applied in biosensing, energy transfer, separation, and so on. Here, inspired by the synergistic effect of biological nanopores, biomimetic solid-state nanochannels with hydrophilic DNA probes at the inner wall (DNA@IWHydrophilic ) and hydrophobic coating at the outer surface (None@OSHydrophobic ) are designed. To demonstrate their prompted sensing properties, Hg2+ and its specific probe are selected as target and hydrophilic DNA probes, respectively. Compared with the traditional solid-state nanochannels with hydrophilic probes distributed on both the inner wall and outer surface, the nanochannels with DNA@IWHydrophilic +None@OSHydrophobic significantly decrease the limit of detection (LOD) by 105 -fold. The obvious improvement of sensitivity (with LOD of 1 nM) is attributed to the synergistic effect: None@OSHydrophobic results in the nanochannel's effective diameter decrease and DNA@IWHydrophilic induces a specific sensing target. Meanwhile, nanomolar detection of Hg2+ in human serum and in vivo fish muscle are achieved. Through molecular dynamics simulation, the synergistic effect can be confirmed by ion fluxes increasement; the relative carbon nanotube increases from 135.64% to 135.84%. This work improves the understanding of nanochannels' synergistic effect and provides a significant insight for nanochannels with improved sensitivity.
Collapse
Affiliation(s)
- Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, P. R. China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Bing Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|