1
|
Vyas S, Barot YB, Mishra R. Novel Anthracene and Carbazole Based Aggregation Induced Enhanced Emission Active Schiff Base as a Selective Sensor for Cu 2+ ions. J Fluoresc 2024:10.1007/s10895-024-03713-w. [PMID: 38656644 DOI: 10.1007/s10895-024-03713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
In present work our group has synthesized two novel Schiff-bases, Di-Carbazole based Schiff-base (DB-1) and Di-Anthracene based Schiff-base (DB-2) using condensation reaction and characterized thorough different spectroscopic techniques such as mass spectrometry, IR spectroscopy, 1H and 13C NMR spectroscopy. Furthermore, the AIE(Aggregation induced emission) studies were done using water-THF mixture. As compared to pure THF, the DB-2 showed a 17.8-fold increase in fluorescence intensity with a bathochromic shift of 64 nm in 80% water: THF mixture. For DB-1increase was seen at 70% water-THF combination. The analysis of the dynamic light scattering (DLS) further supported this excellent AIEE (Aggregation induced enhanced emission) characteristic. Furthermore, the spectrofluorometric techniques were used to examine the capacity of both Schiff bases to detect the heavy metals. It was discovered that only DB-1, with a detection limit of 2.4 × 10-8 M, was selective for the Cu2+ ion, whereas DB-2 had no sensing capability for metal ions. The Job's plot was used to determine the stoichiometry ratio of the DB-1 with Cu2+ to further examine the process. It was discovered that the ratio was 1:1 (DB-1:Cu2+). Additionally, the association constant of DB-1 for Cu2+ was 5.1 × 1011 M-1, demonstrating the excellent binding affinity of DB-1 for the Cu2+ ion.
Collapse
Affiliation(s)
- Saurabh Vyas
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Yash B Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
2
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Segura C, Ormazabal-Toledo R, García-Beltrán O, Squeo BM, Bachmann C, Flores C, Osorio-Román IO. Photophysical Analysis of Aggregation-Induced Emission (AIE) Luminogens Based on Triphenylamine and Thiophene: Insights into Emission Behavior in Solution and PMMA Films. Chemistry 2024; 30:e202302940. [PMID: 38078547 DOI: 10.1002/chem.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.
Collapse
Affiliation(s)
- Camilo Segura
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Chile
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Región Metropolitana, Chile
| | - Benedetta M Squeo
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via A. Corti, 20133, Milano, Italy
| | - Cristian Bachmann
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| | - Catalina Flores
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| | - Igor O Osorio-Román
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, 509000, Chile
| |
Collapse
|
4
|
Barot YB, Anand V, Mishra R. Red-Emitting AIEE-Active Rhodamine-Based Ionic Liquid for the Ultrasensitive and Selective Detection of Mercury Ions. J Phys Chem B 2023. [PMID: 38018428 DOI: 10.1021/acs.jpcb.3c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A highly fluorescent, red-emitting rhodamine-based imidazolium ionic liquid (RhB-IL) was synthesized, and its structure was extensively verified using various spectroscopic techniques. The novel molecule showed exceptional selectivity toward Hg2+ ions over other competitive metal ions. Additionally, inspired by the solution results, a paper-based device was fabricated by embedding RhB-IL on paper strips and tested for the on-site detection of Hg2+ ions using a portable UV light source. Significantly, the device displayed excellent PL sensing behavior toward Hg2+ with a detection limit of 0.21 nM. In addition, RhB-IL showed the phenomena of aggregation-induced enhanced emission. In fact, when compared to the pure THF solution of RhB-IL, a remarkable 7.7-fold increase in PL intensity was seen for the 90% water fraction. Evidently, this is the first report of a paper-based Hg2+ detection system that uses a red fluorescent ionic liquid.
Collapse
Affiliation(s)
- Yash B Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
5
|
Barot YB, Anand V, Vyas S, Mishra R. Paper-based Device for Nanomolar Detection of Cd2+ Using AIEE-Active Imidazolium Ionic Liquid Functionalized Phenothiazine based Schiff-Base. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
6
|
Wang Z, Ma J, Li C, Zhang H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. BIOSENSORS 2023; 13:159. [PMID: 36831925 PMCID: PMC9953538 DOI: 10.3390/bios13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.
Collapse
|
7
|
Choudhary NK, Mittapelli LL, Kumar Roy P, Das G, Mandal M, Gore KR. Vinyl substituted triphenylamine based turn-off fluorescent probe for selective and sensitive detection of mercury (II) in water and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121887. [PMID: 36162211 DOI: 10.1016/j.saa.2022.121887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Here, we report vinyl substituted triphenylamine (TPA-alk) fluorescent probe for the rapid and efficient detection of mercury ion (Hg2+) in water and biological environment. TPA-alk detects Hg2+ selectively over a wide range of competitive metal ions with a blue shift of 43 nm in the UV absorbance spectrum. The detection limit is found to be 0.146 µM (29.2 ppb) with high selectivity over a wide range of competitive metal ions. DFT study explains the blue shift in the UV-vis absorption band of the optical probe upon the addition of Hg2+. Cell viability assay illustrates that the probe is biocompatible and it has low cytotoxicity even at its higher concentration. Cell imaging studies demonstrate the efficiency of the TPA-alk probe for the micromolar detection of mercury (II) in live BMG1 cells.
Collapse
Affiliation(s)
- Nishant Kumar Choudhary
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
8
|
Singh Rana V, Anand V, Shekhar Sarkar S, Sandhu N, Verma M, Naidu S, Kumar K, Yadav RK, Shrivastava R, Singh AP. A novel pyrene-based Aggregation Induced Enhanced Emission active Schiff base fluorophore as a selective “turn-on” sensor for Sn2+ ions and its application in lung adenocarcinoma cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Chen M, Cao F, Huang S, Li Y, Zhong M, Zhu M. The Schiff Base Probe With J-aggregation Induced Emission for Selective Detection of Cu 2. J Fluoresc 2022; 32:1457-1469. [PMID: 35451703 DOI: 10.1007/s10895-022-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Here, three Schiff bases 3a-c, differing by the substitutions (-H, -Cl, and -N(CH3)2) on the phenyl ring, have been designed and synthesized via the reaction of ortho-aminophenol with benzaldehyde, 2,4-dichlorobenzaldehyde and para-dimethylamine benzaldehyde in 1:1 molar ratio with favourable yields of 89-92%, respectively. Their structural characterizations were studied by FT-IR, NMR, MALDI-MS and elemental analysis. The fluorescence behaviours of compounds 3a and 3b exhibited a severe aggregation caused quenching (ACQ) effect in EtOH/water system. On the contrary, compound 3c had an obvious J-aggregation induced emission (AIE) feature in EtOH/water mixture (v/v = 1:1), and exhibited excellent sensitivity and anti-interference towards Cu2+ with the limit of detection (LOD) of 1.35 × 10-8 M. Job's plot analysis and MS spectroscopic study revealed the 2:1 complexation of probe 3c and Cu2+. In addition, probe 3c was successfully applied to the determination of Cu2+ in real aqueous samples.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Fengying Cao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Shizhou Huang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Yangping Li
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Min Zhong
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China.
| |
Collapse
|
10
|
Barot YB, Anand V, Mishra R. Phenothiazine and triphenylamine-based fluorescent Schiff bases for the dual application of white light generation and H 2O 2 sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj02618j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two simple Schiff bases applied for white light emission in an ionic liquid medium and peroxide sensing with an exceptional LOD.
Collapse
Affiliation(s)
- Yash B. Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan Mohali 140413, Punjab, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| |
Collapse
|