1
|
Hu Z, Wang F, Liu Y, Ma S, Ouyang S, Li M, Wu Y, Wang L. An electrostatically spun cellulose-based self-powered mask with high efficiency air filtration and ammonia sensing. Int J Biol Macromol 2024; 282:137226. [PMID: 39491701 DOI: 10.1016/j.ijbiomac.2024.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
On construction sites impacted by particulate matter and hazardous gases, portable integrated air filtration equipment with high efficiency, minimal pressure drops and ammonia (NH3) alarms is critical. Triboelectric nanogenerators (TENG) present a sustainable solution by generating self-powered electricity to fulfill these requirements. In this study, we synthesized zeolitic imidazolate framework-8 (ZIF-8) in situ on the surface of titanium carbide (Ti3C2Tx) to create Ti3C2Tx/ZIF-8, grafted it onto cellulose diacetate via tetraethyl orthosilicate, and ultimately developed a cellulose-based nanofibrous membrane through electrospinning, combining it with a negative triboelectric material to construct a self-powered TENG-based mask. The device achieved a balance between a low pressure drop (61 Pa) and high filtration efficiency (99.21 %, 99.71 %, and 99.98 % for PM0.3, PM0.5, and PM1, respectively). Furthermore, the device responds swiftly to NH3; at a concentration of 100 ppm NH3, it achieves a rapid response rate of 83 %, with a response/recovery time as low as 12/14 s. Notably, the device retains its rapid sterilization capability within a short duration (20 min) and demonstrates remarkable stability across its various performance metrics, even after multiple washes. This study presents a novel approach to the development of multi-use, self-powered wearable devices featuring excellent air filtration performance and NH3 detection capabilities.
Collapse
Affiliation(s)
- Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wagdy R, Mubarak MF, Mohamed RS, El Shahawy A. Industrial-scale feasibility for textile wastewater treatment via Photocatalysis-adsorption technology using black sand and UV lamp. RSC Adv 2024; 14:10776-10789. [PMID: 38572348 PMCID: PMC10988593 DOI: 10.1039/d4ra00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Dye-contaminated wastewater is a major environmental problem that requires effective and affordable treatment methods. This study investigates an innovative approach using black sand filtration assisted by UV light to remove methylene blue (MB) dye from wastewater. The motivation is to develop a sustainable low-cost wastewater treatment technology. Black sand's composition of iron oxide and other metal oxides enables the adsorption and photocatalytic degradation of dyes. The effects of operating parameters, including pH, bed height, flow rate, and initial MB concentration, were examined using a fixed-bed column system. The maximum adsorption capacity was 562.43 mg g-1 at optimal pH 10, 15 cm bed height, 50 ppm MB, and 53.33 mL min-1 flow rate. Mathematical models effectively described the experimental breakthrough curves. For real textile wastewater, black sand with a UV lamp removed 50.40% COD, 73.68% TDS, 43.82% TSS, and 98.57% conductivity, significantly outperforming filtration without UV assistance. Characterization via XRD, XRF, FTIR, zeta potential, and SEM revealed black sand's photocatalytic properties and mechanism of MB adsorption. The findings demonstrate black sand filtration plus UV irradiation as a feasible, sustainable technology for removing dyes and organics from wastewater. This method has promise for the scale-up treatment of textiles and other industrial effluents.
Collapse
Affiliation(s)
- Rabab Wagdy
- Environmental Engineering Department, Faculty of Engineering, Zagazig University Postal code 44519 Zagazig Egypt
| | - Mahmoud F Mubarak
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI) Nasr City Cairo 11727 Egypt
| | - Rasha S Mohamed
- Refining Division, Egyptian Petroleum Research Institute 1 Ahmed El-Zomor St., Nasr City 11727 Cairo Egypt
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University, Environmental Engineering P.O. Box 41522 Ismailia Egypt
| |
Collapse
|
3
|
Gamal S, Kospa DA, Ibrahim AA, Ahmed AI, Ouf AMA. A comparative study of α-Ni(OH) 2 and Ni nanoparticle supported ZIF-8@reduced graphene oxide-derived nitrogen doped carbon for electrocatalytic ethanol oxidation. RSC Adv 2024; 14:5524-5541. [PMID: 38352684 PMCID: PMC10863423 DOI: 10.1039/d3ra08208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Ethanol electrooxidation is an important reaction for fuel cells, however, the major obstacle to ethanol electrocatalysis is the splitting of the carbon-carbon bond to CO2 at lower overpotentials. Herein, a ZIF-8@graphene oxide-derived highly porous nitrogen-doped carbonaceous platform containing zinc oxide was attained for supporting a non-precious Ni-based catalyst. The support was doped with the disordered α-phase Ni(OH)2 NPs and Ni NPs that are converted to Ni(OH)2 through potential cycling in alkaline media. The Ni-based catalysts exhibit high electroactivity owing to the formation of the NiOOH species which has more unpaired d electrons that can bond with the adsorbed species. From CV curves, the EOR onset potential of the α-Ni(OH)2/ZNC@rGO electrode is strongly shifted to negative potential (Eonset = 0.34 V) with a high current density of 8.3 mA cm-2 relative to Ni/ZNC@rGO. The high catalytic activity is related to the large interlayer spacing of α-Ni(OH)2 which facilitates the ion-solvent intercalation. Besides, the porous structure of the NC and the high conductivity of rGO facilitate the kinetic transport of the reactants and electrons. Finally, the catalyst displays a high stability of 92% after 900 cycles relative to the Ni/ZNC@rGO and commercial Pt/C catalysts. Hence, the fabricated α-Ni(OH)2/ZNC@rGO catalyst could be regarded as a potential catalyst for direct EOR in fuel cells.
Collapse
Affiliation(s)
- Soliman Gamal
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - A M A Ouf
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| |
Collapse
|
4
|
Kaid MM, Shehab MK, Fang H, Ahmed AI, El-Hakam SA, Ibrahim AA, Jena P, El-Kaderi HM. Selective Reduction of Multivariate Metal-Organic Frameworks for Advanced Electrocatalytic Cathodes in High Areal Capacity and Long-Life Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2283-2295. [PMID: 38166008 DOI: 10.1021/acsami.3c15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lithium-sulfur batteries hold great promise as next-generation high-energy-density batteries. However, their performance has been limited by the low cycling stability and sulfur utilization. Herein, we demonstrate that a selective reduction of the multivariate metal-organic framework, MTV-MOF-74 (Co, Ni, Fe), transforms the framework into a porous carbon decorated with bimetallic CoNi alloy and Fe3O4 nanoparticles capable of entrapping soluble lithium polysulfides while synergistically facilitating their rapid conversion into Li2S. Electrochemical studies on coin cells containing 89 wt % sulfur loading revealed a reversible capacity of 1439.8 mA h g-1 at 0.05 C and prolonged cycling stability for 1000 cycles at 1 C/1060.2 mA h g-1 with a decay rate of 0.018% per cycle. At a high areal sulfur loading of 6.9 mg cm-2 and lean electrolyte/sulfur ratio (4.5 μL:1.0 mg), the battery based on the 89S@CoNiFe3O4/PC cathode provides a high areal capacity of 6.7 mA h cm-2. The battery exhibits an outstanding power density of 849 W kg-1 at 5 C and delivers a specific energy of 216 W h kg-1 at 2 C, corresponding to a specific power of 433 W kg-1. Density functional theory shows that the observed results are due to the strong interaction between the CoNi alloy and Fe3O4, facilitated by charge transfer between the polysulfides and the substrate.
Collapse
Affiliation(s)
- Mahmoud M Kaid
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hong Fang
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Physics, Rutgers University, Camden, New Jersey 08102, United States
| | - Awad I Ahmed
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Sohier A El-Hakam
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
5
|
Arya K, Kumar A, Sharma A, Singh S, Sharma SK, Mehta SK, Kataria R. A Hybrid Nanocomposite of Coordination Polymer and rGO for Photocatalytic Degradation of Safranin-O Dye Under Visible Light Irradiation. Top Catal 2022. [DOI: 10.1007/s11244-022-01701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|