1
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
2
|
Taruno K, Ikariko I, Taniguchi T, Kim S, Fukaminato T. Internal Heavy-Atom Effect on Visible-Light-Induced Cyclization Reaction in Diarylethene-Perylenebisimide Dyads. J Phys Chem B 2024; 128:273-279. [PMID: 38118147 DOI: 10.1021/acs.jpcb.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
All-visible-light switchable diarylethene-perylenebisimide (DAE-PBI) dyads having bromine heavy atoms in the molecule were designed and synthesized. Very recently, we found a unique visible-light-induced cyclization reaction in a DAE-PBI dyad. The dyad exhibited reversible cyclization and cycloreversion reactions upon alternate irradiation with green (500-550 nm) and red (>600 nm) light. From the experimental results, it was suggested that the triplet state of DAE unit was generated via multiplicity conversion based on intramolecular energy transfer from the singlet excited state of PBI unit and that the cyclization reaction of DAE unit proceeded from the triplet state. In addition, it was revealed that the reactivity remarkably increased in a solvent containing heavy atoms such as carbon tetrachloride and iodoethane (i.e., external heavy-atom effect). Based on such results, in this study, we attempted to design and synthesize novel DAE-PBI dyads introducing bromine heavy atoms at different positions in the molecule. The synthesized dyads exhibited higher quantum yields of photocyclization reaction under visible-light irradiation even in a heavy-atom-free solvent compared to the previous dyad having no heavy atoms. The magnitude of enhancement well correlated to the contribution ratio of atomic orbital of bromine to the molecular orbital in LUMOs. These results indicated that the internal heavy atom effectively contributed to the visible-light-induced cyclization reaction in DAE-PBI dyads. Such an internal heavy-atom effect will pave the way for new molecular design to develop all-visible-light-activatable molecular switches.
Collapse
Affiliation(s)
- Koya Taruno
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Taku Taniguchi
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Sarabamoun ES, Bietsch JM, Aryal P, Reid AG, Curran M, Johnson G, Tsai EHR, Machan CW, Wang G, Choi JJ. Photoluminescence switching in quantum dots connected with fluorinated and hydrogenated photochromic molecules. RSC Adv 2024; 14:424-432. [PMID: 38173584 PMCID: PMC10759204 DOI: 10.1039/d3ra07539g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.
Collapse
Affiliation(s)
| | - Jonathan M Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Maurice Curran
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Grayson Johnson
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Joshua J Choi
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
4
|
Non-volatile optical memory based on cooperative orientation switching: improvement of recording speed and contrast by utilizing out-of-plane orientation mode. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:857-865. [PMID: 36635601 DOI: 10.1007/s43630-022-00357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Herein, we report a novel strategy toward non-volatile optical memory with high-contrast, high-speed recording, and non-destructive readout capability based on the cooperative out-of-plane orientation of a fluorescent dye doped into azobenzene liquid crystalline polymer film. By employing the out-of-plane orientation switching upon irradiation with UV light and thermal heating, high-contrast turn-on fluorescence switching was successfully achieved and the optical recording was demonstrated with non-destructive fluorescence readout capability. Furthermore, the recording speed and the fluorescence on/off contrast in the present system were dramatically improved compared to the previous in-plane orientation mode.
Collapse
|
5
|
Pellissier-Tanon A, Chouket R, Zhang R, Lahlou A, Espagne A, Lemarchand A, Croquette V, Jullien L, Le Saux T. Resonances at Fundamental and Harmonic Frequencies for Selective Imaging of Sine-Wave Illuminated Reversibly Photoactivatable Labels. Chemphyschem 2022; 23:e202200295. [PMID: 35976176 PMCID: PMC10087976 DOI: 10.1002/cphc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/15/2022] [Indexed: 01/04/2023]
Abstract
We introduce HIGHLIGHT as a simple and general strategy to selectively image a reversibly photoactivatable fluorescent label associated with a given kinetics. The label is submitted to sine-wave illumination of large amplitude, which generates oscillations of its concentration and fluorescence at higher harmonic frequencies. For singularizing a label, HIGHLIGHT uses specific frequencies and mean light intensities associated with resonances of the amplitudes of concentration and fluorescence oscillations at harmonic frequencies. Several non-redundant resonant observables are simultaneously retrieved from a single experiment with phase-sensitive detection. HIGHLIGHT is used for selective imaging of four spectrally similar fluorescent proteins that had not been discriminated so far. Moreover, labels out of targeted locations can be discarded in an inhomogeneous spatial profile of illumination. HIGHLIGHT opens roads for simplified optical setups at reduced cost and easier maintenance.
Collapse
Affiliation(s)
- Agnès Pellissier-Tanon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Raja Chouket
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ruikang Zhang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Aliénor Lahlou
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France.,Sony Computer Science Laboratories, Paris, France
| | - Agathe Espagne
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Annie Lemarchand
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4, Place Jussieu, Case Courrier 121, 75252, Paris Cedex 05, France
| | - Vincent Croquette
- Laboratoire de Physique Statistique, Département de Physique and Département de Biologie, École normale supérieure, PSL Research University, F-, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
6
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
7
|
Kim D, Aktalay A, Jensen N, Uno K, Bossi ML, Belov VN, Hell SW. Supramolecular Complex of Photochromic Diarylethene and Cucurbit[7]uril: Fluorescent Photoswitching System for Biolabeling and Imaging. J Am Chem Soc 2022; 144:14235-14247. [PMID: 35895999 PMCID: PMC9376957 DOI: 10.1021/jacs.2c05036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Photoswitchable fluorophores—proteins and synthetic
dyes—whose
emission is reversibly switched on and off upon illumination, are
powerful probes for bioimaging, protein tracking, and super-resolution
microscopy. Compared to proteins, synthetic dyes are smaller and brighter,
but their photostability and the number of achievable switching cycles
in aqueous solutions are lower. Inspired by the robust photoswitching
system of natural proteins, we designed a supramolecular system based
on a fluorescent diarylethene (DAE) and cucurbit[7]uril
(CB7) (denoted as DAE@CB7). In this assembly, the photoswitchable DAE molecule is encapsulated by CB7 according to the host–guest
principle, so that DAE is protected from the environment
and its fluorescence brightness and fatigue resistance in pure water
improved. The fluorescence quantum yield (Φfl) increased
from 0.40 to 0.63 upon CB7 complexation. The photoswitching of the DAE@CB7 complex, upon alternating UV and visible light irradiations,
can be repeated 2560 times in aqueous solution before half-bleaching
occurs (comparable to fatigue resistance of the reversibly photoswitchable
proteins), while free DAE can be switched on and off
only 80 times. By incorporation of reactive groups [maleimide and N-hydroxysuccinimidyl (NHS) ester], we prepared bioconjugates
of DAE@CB7 with antibodies and demonstrated both specific
labeling of intracellular proteins in cells and the reversible on/off
switching of the probes in cellular environments under irradiations
with 355 nm/485 nm light. The bright emission and robust photoswitching
of DAE-Male3@CB7 and DAE-NHS@CB7 complexes
(without exclusion of air oxygen and addition of any stabilizing/antifading
reagents) enabled confocal and super-resolution RESOLFT (reversible
saturable optical fluorescence transitions) imaging with apparent
70–90 nm optical resolution.
Collapse
Affiliation(s)
- Dojin Kim
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Kakishi Uno
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| |
Collapse
|
8
|
Liuye S, Cui S, Lu M, Pu S. Construction of a photo-controlled fluorescent switching with diarylethene modified carbon dots. NANOTECHNOLOGY 2022; 33:405705. [PMID: 34991084 DOI: 10.1088/1361-6528/ac48ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Photo-controlled fluorescent switching is of great utility in fluorescence sensors, reversible data storage, and logic circuit, based on their modifiable emission intensity and spectra. In this work, a novel photo-controlled reversible fluorescent switching system was constructed based on photochromic diarylethene (DT) molecular modified fluorescent carbon dots (CDs). The fluorescent CDs acted as fluorescent donors and the photochromic diarylethene molecular functioned as acceptors in this fluorescent switching system. The fluorescence modulation efficiency of the fluorescent switching was determined to be 97.1%. The result was attributable to Förster resonance energy transfer between the CDs and the diarylethene molecular. The fluorescent switching could undergo 20 cycles without significant decay.
Collapse
Affiliation(s)
- Shiqi Liuye
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Mengmeng Lu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Department of Ecology and environment, Yuzhang Normal University, Nanchang 330103, People's Republic of China
| |
Collapse
|
9
|
Galangau O, Norel L, Rigaut S. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans 2021; 50:17879-17891. [PMID: 34792058 DOI: 10.1039/d1dt03397b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
10
|
Kolmar T, Becker A, Pfretzschner RA, Lelke A, Jäschke A. Development of Red-Shifted and Fluorogenic Nucleoside and Oligonucleotide Diarylethene Photoswitches. Chemistry 2021; 27:17386-17394. [PMID: 34519390 PMCID: PMC9298058 DOI: 10.1002/chem.202103133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/21/2022]
Abstract
The reversible modulation of fluorescence signals by light is of high interest for applications in super‐resolution microscopy, especially on the DNA level. In this article we describe the systematic variation of the core structure in nucleoside‐based diarylethenes (DAEs), in order to generate intrinsically fluorescent photochromes. The introduction of aromatic bridging units resulted in a bathochromic shift of the visible absorption maximum of the closed‐ring form, but caused reduced thermal stability and switching efficiency. The replacement of the thiophene aryl unit by thiazol improved the thermal stability, whereas the introduction of a benzothiophene unit led to inherent and modulatable turn‐off fluorescence. This feature was further optimized by introducing a fluorescent indole nucleobase into the DAE core, resulting in an effective photoswitch with a fluorescence quantum yield of 0.0166 and a fluorescence turn‐off factor of 3.2. The site‐specific incorporation into an oligonucleotide resulted in fluorescence‐switchable DNA with high cyclization quantum yields and switching efficiency, which may facilitate future applications.
Collapse
Affiliation(s)
- Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität-Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Antonia Becker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität-Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Ronja A Pfretzschner
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität-Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Alina Lelke
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität-Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität-Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Li C, Aldred MP, Harder RA, Chen Y, Yufit DS, Zhu MQ, Fox MA. Carborane photochromism: a fatigue resistant carborane switch. Chem Commun (Camb) 2021; 57:9466-9469. [PMID: 34528961 DOI: 10.1039/d1cc03248h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A dithienylethene molecule involving carborane clusters shows remarkable fatigue resistance and high contrast visual colour changes when irradiated with alternating ultraviolet and visible light. The fluorescence of this assembly can be switched on and off when irradiated in the solid state but not in the solution state.
Collapse
Affiliation(s)
- Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Matthew P Aldred
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Rachel A Harder
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Ying Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mark A Fox
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
12
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
13
|
Tu M, Díaz Ramírez ML, Ibarra IA, Hofkens J, Ameloot R. Fluorescence Photoswitching in a Series of Metal‐Organic Frameworks Loaded with Different Anthracenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Tu
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven – University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Science Shanghai Shanghai 200050 China
| | - Mariana Lizeth Díaz Ramírez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Johan Hofkens
- Department of Molecular Visualization and Photonics KU Leuven-University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven – University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
14
|
Ahanger FA, Nazir N, Lone MS, Afzal S, Dar AA. Emission Color Tuning and White Light Generation from a Trimolecular Cocktail in Cationic Micellar System with Promising Applicability in the Anticounterfeiting Technology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7730-7740. [PMID: 34128682 DOI: 10.1021/acs.langmuir.1c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of photoluminescent (PL) systems, displaying multiple stimuli-responsive emission color tuning, has been the pressing priority in the recent times due to their huge role in contemporary lighting and anticounterfeiting technologies. Acknowledging this importance, we present a simple and eco-friendly PL system showing emission color tuning in response to different stimuli, that is, the composition of the system, pH, excitation wavelength, and the temperature with the plus point of getting significantly pure white light emission (WLE). The novel system is fabricated from the aqueous mixture of three organic fluorophores, umbelliferone (UMB), fluorescein (FLU), and Rhodamine-B (RB). By varying the fluorophore composition in the mixture at pH 12, nearly pure WLE with a Commission Internationale d'Eclairage (CIE) 1931 profile of (0.33, 0.33) was obtained at the excitation wavelength of 365 nm, the sustainability of which was ensured by employing the micellar self-assemblies of tetradecyltrimethylammonium bromide (TTAB) molecules. Similar WLE was obtained under mildly acidic conditions (pH 6) but at the excitation wavelength of 330 nm. By proper tuning of pH and the wavelengths of the system to use it as a fluorescent ink, we found a remarkable and highly applicable phenomenon observed for the first time, that is, triple-mode orthogonal emission color tuning with white light ON/OFF switching. We validate the vital applicability of this phenomenon in protecting the authenticity of the document with its hard-to-counterfeit property. The applicability of this phenomenon is also explored by synthesizing PVA-based fluorescent films from the tri-fluorophore mixture. Moreover, the emission color of the PL system was explored lucidly for its temperature dependence owing to the thermal responsiveness of RB emission, where the PL system proves to be a full-color RGB system.
Collapse
Affiliation(s)
- Firdaus Ahmad Ahanger
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Nighat Nazir
- Department of Chemistry, Islamia College of Science and Commerce, Hawal, Srinagar 190002, J&K, India
| | - Mohd Sajid Lone
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Saima Afzal
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| |
Collapse
|
15
|
Ragab SS. Synthesis and UV-irradiation of photocaged nitrobenzyl-BODIPY derivatives. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two different photocaged 2-nitrobenzyl-BODIPY derivatives were designed and synthesized, where the 2-nitrobenzyl phototrigger is either directly attached to the meso position of BODIPY or through a phenoxy linker. The photochemical and photophysical properties of the two constructs were studied and their fluorescence quantum yields were determined. The ultraviolet irradiation of the two photocaged BODIPYs demonstrated a twofold fluorescence enhancement accompanying the uncaging of the BODIPY with the directly attached phototrigger, while the second switchable dyad with the phenoxy linker retains its essentially unaltered emissive behavior.
Collapse
Affiliation(s)
- Sherif Shaban Ragab
- Photochemistry Department, Chemical Industries Research Division, National Research Centre (NRC), El behouth Street, Dokki, Giza, 12622, Egypt
| |
Collapse
|
16
|
Yamasaki S, Ishida S, Kim S, Yamada M, Nakashima T, Kawai T, Kurihara S, Fukaminato T. Efficient NIR-I fluorescence photoswitching based on giant fluorescence quenching in photochromic nanoparticles. Chem Commun (Camb) 2021; 57:5422-5425. [PMID: 33949476 DOI: 10.1039/d1cc01389k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A photoswitchable near-infrared (NIR) fluorescent nanoparticle (NP) was designed and prepared. The NP showed a characteristic AIE property and high-contrast NIR fluorescence photoswitching with full reversibility. Such efficient NIR fluorescence photoswitching originated from the amplified fluorescence quenching mechanism based on intermolecular energy transfer in a densely packed NP state.
Collapse
Affiliation(s)
- Shinya Yamasaki
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Sanae Ishida
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Sunnam Kim
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Mihoko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry & Biochemistry, Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
17
|
Yu CJ, von Kugelgen S, Laorenza DW, Freedman DE. A Molecular Approach to Quantum Sensing. ACS CENTRAL SCIENCE 2021; 7:712-723. [PMID: 34079892 PMCID: PMC8161477 DOI: 10.1021/acscentsci.0c00737] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/09/2023]
Abstract
The second quantum revolution hinges on the creation of materials that unite atomic structural precision with electronic and structural tunability. A molecular approach to quantum information science (QIS) promises to enable the bottom-up creation of quantum systems. Within the broad reach of QIS, which spans fields ranging from quantum computation to quantum communication, we will focus on quantum sensing. Quantum sensing harnesses quantum control to interrogate the world around us. A broadly applicable class of quantum sensors would feature adaptable environmental compatibility, control over distance from the target analyte, and a tunable energy range of interaction. Molecules enable customizable "designer" quantum sensors with tunable functionality and compatibility across a range of environments. These capabilities offer the potential to bring unmatched sensitivity and spatial resolution to address a wide range of sensing tasks from the characterization of dynamic biological processes to the detection of emergent phenomena in condensed matter. In this Outlook, we outline the concepts and design criteria central to quantum sensors and look toward the next generation of designer quantum sensors based on new classes of molecular sensors.
Collapse
|
18
|
Turn-on mode diarylethenes for bioconjugation and fluorescence microscopy of cellular structures. Proc Natl Acad Sci U S A 2021; 118:2100165118. [PMID: 33782137 PMCID: PMC8040663 DOI: 10.1073/pnas.2100165118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In superresolution fluorescence microscopy, employing synthetic dyes that can be reversibly photoswitched between a nonfluorescent (“dark”) and a fluorescent (“bright”) state has been an attractive alternative to using photoswitchable fluorescent proteins. However, employing such synthetic dyes has been elusive because they have defied reliable attachment to proteins and required UV light for photoswitching. Here we prepared “turn-on mode” fluorescent diarylethenes (fDAEs) that are switchable with visible rather than UV light and blink between a bright fluorescent and a dark state in aqueous buffers. Moreover, our thienyl-substituted fDAEs effectively labeled two thiol groups on nanobodies bearing a single maleimide tag. With these small-sized probes, we acquired superresolution images of vimentin filaments in cells by applying just yellow (561 nm) light. The use of photoswitchable fluorescent diarylethenes (fDAEs) as protein labels in fluorescence microscopy and nanoscopy has been limited by labeling inhomogeneity and the need for ultraviolet light for fluorescence activation (on-switching). To overcome these drawbacks, we prepared “turn-on mode” fDAEs featuring thienyl substituents, multiple polar residues, and a reactive maleimide group in the core structure. Conjugates with antibodies and nanobodies displayed complete on-switching and excitation with violet (405 nm) and yellow-green (<565 nm) light, respectively. Besides, they afforded high signal-to-noise ratios and low unspecific labeling in fluorescence imaging. Irradiation with visible light at 532 nm or 561 nm led to transient on-off switching (“blinking”) of the fDAEs of double-labeled nanobodies so that nanoscale superresolution images were readily attained through switching and localization of individual fluorophores.
Collapse
|
19
|
Goswami R, Pal TK, Neogi S. Stimuli -triggered fluoro-switching in metal-organic frameworks: applications and outlook. Dalton Trans 2021; 50:4067-4090. [PMID: 33690775 DOI: 10.1039/d1dt00202c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The design and synthesis of efficient sensor materials with fast-responsive and ultrasensitive detection ability is critical to monitor ecological safety, supervise human health, control industrial wastes, and govern food quality among others. Metal-organic frameworks (MOFs) or coordination polymers (CPs) are a new class of porous crystalline materials that have emerged in several potential applications in last two decades. In particular, applications of MOFs as sensory scaffolds for the detection of hazardous pollutants have attracted researchers due to their fabulous structural characteristics and wide range of pore environment tunability. Among several transducer procedures, the luminescence detection of a particular analyte is immensely desirable as it is easy to handle and cost effective, where visual changes in physicochemical attributes can be comprehended via a quick naked eye detection. The porous nature of MOFs facilitates the pre-concentration of target analytes within the pore structure and provides superior host-guest interaction with good detection limits when compared to conventional materials. To this end, guest-induced fluorescence switching in sensory MOFs with good recyclability and unique detectable fingerprints are of particular importance to benefit futuristic monitoring aptitudes and promises environmental remediation. In this review, we present the latest literature based on the analyte-responsive modulation of fluorescence intensity in MOFs towards the detection of target pollutants and discuss the underlying sensing mechanism, which can assist in developing new useful nano-scale devices and sensors.
Collapse
Affiliation(s)
- Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| | | | | |
Collapse
|
20
|
Chen S, Chen L, Cai Y, Zhu WH. Photoswitchable Fluorescent Self-Assembled Metallacycles with High Photostability. Chemistry 2021; 27:5240-5245. [PMID: 33442888 DOI: 10.1002/chem.202005184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/07/2022]
Abstract
In this study, photoswitchable fluorescent supramolecular metallacycles with high fatigue-resistance have been constructed by coordination-driven self-assembly by using bithienylethene with dipyridyl units (BTE) as a coordination donor and a fluorescent di-platinum(II) (Pt-F) as a coordination acceptor. The photo-triggered reversible transformation between the ring-open and ring-closed form of the metallacycles was confirmed by 1 H NMR, 31 P NMR, and UV/Vis spectroscopy. This unique property enabled a reversible noninvasive "off-on" switching of fluorescence through efficient Förster resonance energy transfer (FRET). Importantly, the metallacycles remained structurally intact after up to 10 photoswitching cycles. The photoresponsive property and exceptional photostability of the metallacycles posit their potential promising application in optical switching, image storage, and super-resolution microscopy.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lijun Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China
| | - Yunsong Cai
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
21
|
Norel L, Galangau O, Al Sabea H, Rigaut S. Remote Control of Near Infrared Emission with Lanthanide Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucie Norel
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Olivier Galangau
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Hassan Al Sabea
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Stéphane Rigaut
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| |
Collapse
|
22
|
Mubeena S, N M, Annapareddy G, Chen YS, Sarma M, Wong KT. Reversible Fluorescence Switching of Donor–Acceptor Type Bipyridines by Simple Protonation–Deprotonation Equilibria. Aust J Chem 2021. [DOI: 10.1071/ch21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article describes the switchable fluorescence of a series of donor–acceptor type 2,2′-bipyridines. The original bipyridine molecules have four protonation sites – two on the amino donor sites and two on the pyridine acceptor cores. These nitrogen-containing sites are selectively protonated by suitable acids and the protonation influences the electronic conjugation and structure of the chromophores. Consequently, the emission characteristics of the molecules are affected, and this behaviour is reversible, i.e. the neutral original species are regenerated by the addition of an equivalent amount of base. The switchable behaviour of these compounds is accompanied by a visible colour change of the relevant solutions.
Collapse
|
23
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
24
|
Jiang G, Jia Y, Cui S, Pu S. Photo‐Modulated Reversible Switching of Fluorescence from ZnO Quantum Dots with a Photochromic Diarylethene. ChemistrySelect 2020. [DOI: 10.1002/slct.202002973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guorong Jiang
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Yanmei Jia
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
- Department of Ecology and environment Yuzhang Normal University Nanchang 330103 P. R. China
| |
Collapse
|
25
|
Li Y, Chen X, Weng T, Yang J, Zhao C, Wu B, Zhang M, Zhu L, Zou Q. A monomolecular platform with varying gated photochromism. RSC Adv 2020; 10:42194-42199. [PMID: 35516767 PMCID: PMC9057850 DOI: 10.1039/d0ra08214g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
In the development of modern high-performance photoelectric materials, the gated photochromic materials have attracted wide attention. However, the integration of varying signal regulations into gated photochromism to construct efficient photochromic materials is still an urgent necessity. Herein, we designed and synthesized a new gated photoswitching DTEP based on a Schiff base with a diarylethene core. The photochromic properties of compound DTEP can be regulated to different degrees by multiple stimuli, including UV/visible light, Cu2+ and Ni2+. The compound DTEP showed different response abilities to Cu2+ and Ni2+, due to the diverse complexation modes between DTEP and Cu2+ as well as Ni2+. The photochromic properties of compound DTEP could be inhibited completely by the introduction of Cu2+ to form a 1 : 1 complexation, while the weak gated photochromism could be found from the DTEP–Ni2+ complex in a 1 : 2 stoichiometry. Relying on such varying degrees of gated photochromic properties, a new molecular logic circuit was constructed to undertake complicated logical operations. A strategy to realize varying degrees of gated photochromic properties by coordinating with different metal ions within one unimolecular system was devised to achieve the construction of a logic circuit for multi-functional molecular switching.![]()
Collapse
Affiliation(s)
- Yuezheng Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| | - Xuanying Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| | - Taoyu Weng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| | - Jufang Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| | - Chunrui Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Qi Zou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power Shanghai 200090 China
| |
Collapse
|
26
|
Wang G, Li Y, Song T, Shang C, Yang J, Lily M, Fang Y, Liu F. Fluorescence Toggling Mechanism of Photochromic Phenylhydrazones: N–N Single Bond Rotation-Assisting E/Z Photoisomerization Differs from Imine. J Phys Chem A 2020; 124:6411-6419. [DOI: 10.1021/acs.jpca.0c03525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Yazhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Tingting Song
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Jiawei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Makroni Lily
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, People’s Republic of China
| |
Collapse
|
27
|
N-isopropylacrylamide and spiropyran copolymer-grafted fluorescent carbon nanoparticles with dual responses to light and temperature stimuli. Polym J 2020. [DOI: 10.1038/s41428-020-0383-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Lim E, Kwon J, Park J, Heo J, Kim SK. Selective thiolation and photoswitching mechanism of Cy5 studied by time-dependent density functional theory. Phys Chem Chem Phys 2020; 22:14125-14129. [PMID: 32542240 DOI: 10.1039/d0cp00026d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cy5 is one of the most widely used organic dyes with a photoswitching property. It can be reversibly photoconverted to the dark state through thiolation with primary thiols. Although photoswitching of Cy5 has been widely used in super-resolution nanoscopy, its thiolation mechanism remains unclear. We carried out time-dependent density functional theory calculations to investigate the excited state dynamics of Cy5 and observed its site-selective thiolation on both the ground and excited states. Scanning the excited state potential energy surfaces by rotating individual C-C bonds revealed structural similarity between the twisted form of Cy5 and the Cy5 subunit in the thiolated Cy5, which suggests that the dark state formation is strongly associated with the torsional motion on the excited state.
Collapse
Affiliation(s)
- Eunhak Lim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | | | | | | | | |
Collapse
|
29
|
Ikariko I, Hashimoto T, Kim S, Kurihara S, Ito F, Fukaminato T. Synthesis and fluorescence photoswitching of a diarylethene derivative having a dibenzoylmethanato boron difluoride complex. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Halder D, Paul A. Understanding the Role of Aromaticity and Conformational Changes in Bond Dissociation Processes of Photo-Protecting Groups. J Phys Chem A 2020; 124:3976-3983. [PMID: 32338513 DOI: 10.1021/acs.jpca.9b11731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoremovable protecting groups (PPGs) provide spatial and temporal control over the release of various chemicals. Using surface hopping studies with multireference electronic structure methods we have unravelled the nuclear and the electronic events at play. Furthermore, the electronic changes along the reaction path were probed using excited state aromaticity quantifiers and orbital analysis. We find that upon irradiation with light of appropriate wavelength on the substituted coumarin system a π-π* electronic excitation occurs which is followed by an electron loss from the aromatic ring on gaining proper alignment between the π* and the C-LG (LG = leaving group) σ*. This alignment is brought about by a critical dihedral angle change in the molecule, which subsequently triggers C-LG bond cleavage. The sequence of events is indicative of an intramolecular electron catalyzed process which is established through investigations of changes in aromaticity of the phenyl ring which acts as an electron reservoir.
Collapse
Affiliation(s)
- Debabrata Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| |
Collapse
|
31
|
Georgiev A, Yordanov D, Dimov D, Zhivkov I, Nazarova D, Weiter M. Azomethine phthalimides fluorescent E→Z photoswitches. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Belikov MY, Ievlev MY, Fedoseev SV, Ershov OV. The first example of “turn-off” red fluorescence photoswitching for the representatives of nitrile-rich negative photochromes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00718h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first example of reversible fluorescence photoswitching by visible light was shown for the representatives of negative photochromes containing a nitrile-rich acceptor.
Collapse
|
33
|
Li Z, Pei Y, Wang Y, Lu Z, Dai Y, Duan Y, Ma Y, Guo H. Blue-/NIR Light-Excited Fluorescence Switch Based on a Carbazole-Dithienylethene-BF 2bdk Triad. J Org Chem 2019; 84:13364-13373. [PMID: 31496250 DOI: 10.1021/acs.joc.9b01508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of novel solid-state fluorescence switches, particularly triggered by visible light, is of increasing interest for the potential application in optical data storage and super-resolution fluorescence microscopies. In this study, two carbazole-dithienylethene-BF2bdk triads CDB1 and CDB2, suspending carbazole and BF2bdk moieties on both sides of dithienylethene unit, have been developed. They exhibit blue-/NIR light-controlled photochromism with solvent-dependent characteristics. Moreover, CDB1 (o) reveals blue-/NIR light-induced reversible fluorescent switching behaviors in toluene, chloroform, poly(methyl methacrylate) (PMMA) film, and powder state, while its analogue CDB2 (o) in the powder state exhibits no fluorescence due to a strong intermolecular π-π stacking interaction, and the fluorescent switching performance is observed only in toluene and PMMA film. The density functional theory calculations further validate the differences in their optical properties in the solution and powder states.
Collapse
|
34
|
Modulation of diarylethene fluorescence by photochromic switching and solvent polarity. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Lazareva SK, Glebov EM, Nevostruev DA, Lonshakov DV, Lvov AG, Shirinian VZ, Zinovyev VA, Smolentsev AB. Fluorescence modulation of eosin Y in a PMMA film by diarylethene switching. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9381-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Ishida S, Kitagawa D, Kobatake S, Kim S, Kurihara S, Fukaminato T. Efficient “turn-off” fluorescence photoswitching in a highly fluorescent diarylethene single crystal. Chem Commun (Camb) 2019; 55:5681-5684. [PMID: 31017136 DOI: 10.1039/c9cc02441g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient “turn-off” fluorescence photoswitching with full reversibility was successfully demonstrated in a fluorescent diarylethene single crystal.
Collapse
Affiliation(s)
- Sanae Ishida
- Department of Applied Chemistry & Biochemistry
- Graduate School of Science & Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka City University
- Osaka 558-8585
- Japan
| | - Seiya Kobatake
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka City University
- Osaka 558-8585
- Japan
| | - Sunnam Kim
- Department of Applied Chemistry & Biochemistry
- Graduate School of Science & Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Seiji Kurihara
- Department of Applied Chemistry & Biochemistry
- Graduate School of Science & Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry & Biochemistry
- Graduate School of Science & Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
38
|
Watanabe K, Ubukata T, Yokoyama Y. Photochromism and the fluorescence properties of bisbenzothienylethene and S,S,S',S'-tetraoxide derivatives with dual conjugated fluorescent groups on their side chains. Photochem Photobiol Sci 2018; 17:711-717. [PMID: 29644373 DOI: 10.1039/c8pp00050f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two photochromic bisbenzothienylethenes with two fluorescent (4-((2,5-bis(dodecyloxy)-4-(phenylethynyl)phenyl)ethynyl)phenyl) units and their disulfone derivatives were synthesized, and their photochromic and fluorescence properties were examined. Bisbenzothienylethenes showed photochromism and turn-off type fluorescence by UV-light irradiation, while their disulfone derivatives showed turn-on type fluorescence and the one-way isomerization to the closed form.
Collapse
Affiliation(s)
- Katsuhiro Watanabe
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
| | | | | |
Collapse
|
39
|
Zuo J, Tu L, Li Q, Feng Y, Que I, Zhang Y, Liu X, Xue B, Cruz LJ, Chang Y, Zhang H, Kong X. Near Infrared Light Sensitive Ultraviolet-Blue Nanophotoswitch for Imaging-Guided "Off-On" Therapy. ACS NANO 2018; 12:3217-3225. [PMID: 29489327 DOI: 10.1021/acsnano.7b07393] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Photoswitchable materials are important in broad applications. Recently appeared inorganic photoswitchable upconversion nanoparticles (PUCNPs) become a competitive candidate to surmount the widespread issue of the organic counterparts -photobleaching. However, current PUCNPs follow solely Yb3+/Nd3+ cosensitizing mode, which results in complex multilayer doping patterns and imperfectness of switching in UV-blue region. In this work, we have adopted a new strategy to construct Nd3+ free PUCNPs-NaErF4@NaYF4@NaYbF4:0.5%Tm@NaYF4. These PUCNPs demonstrate the superior property of photoswitching. A prominent UV-blue emission from Tm3+ is turned on upon 980 nm excitation, which can be completely turned off by 800 nm light. The quasi-monochromatic red upconversion emission upon 800 nm excitation-a distinct feature of undoping NaErF4 upconversion system-endows the PUCNPs with promising image-guided photoinduced "off-on" therapy in biomedicine. As a proof-of-concept we have demonstrated the imaging-guided photodynamic therapy (PDT) of cancer, where 800 nm excitation turns off the UV-blue emission and leaves the emission at 660 nm for imaging. Once the tumor site is targeted, excitation switching to 980 nm results in UV-blue emission and the red emission. The former is used to induce PDT, whereas the latter is to monitor the therapeutic process. Our study implies that this upconversion photoswitching material is suitable for real-time imaging and image-guided therapy under temporal and spatial control.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098XH Amsterdam , The Netherlands
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Qiqing Li
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Yansong Feng
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098XH Amsterdam , The Netherlands
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology , Leiden University Medical Center , 2333ZA Leiden , The Netherlands
| | - Youlin Zhang
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Xiaomin Liu
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Bin Xue
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology , Leiden University Medical Center , 2333ZA Leiden , The Netherlands
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098XH Amsterdam , The Netherlands
| | - Xianggui Kong
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun , 130033 Jilin , China
| |
Collapse
|
40
|
Martin CJ, Rapenne G, Nakashima T, Kawai T. Recent progress in development of photoacid generators. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Irie M, Morimoto M. Photoswitchable Turn-on Mode Fluorescent Diarylethenes: Strategies for Controlling the Switching Response. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170365] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501
| |
Collapse
|
42
|
Barrez E, Laurent G, Pavageau C, Sliwa M, Métivier R. Comparative photophysical investigation of doubly-emissive photochromic-fluorescent diarylethenes. Phys Chem Chem Phys 2018; 20:2470-2479. [PMID: 29313042 DOI: 10.1039/c7cp06541h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethene molecules showing photochromism and fluorescence properties in both open and closed forms, associated with two different emission colors, are very promising for applications involving ratiometric emissive photoswitches. We report here a complete study on the competition between the multiple photophysical processes involved in the excited states for two sulfone derivatives of benzothiophene-based diarylethene molecules, only differing by the substituent groups on their reactive carbon (methyl for DAE-Me and ethyl for DAE-Et). Steady-state and time-resolved spectroscopy, combined with DFT and TD-DFT calculations, allow a complete determination of the kinetic constants leading to fluorescence and photoreaction pathways in different solvents, and enlighten the specific role of the substituent group in the photophysical properties due to a shielding effect against the solvation environment. The predominant role of the non-radiative deactivation processes in such a family of molecules is shown, and a tentative excited state mechanistic scheme is proposed based on femtosecond transient absorption experiments performed on the closed forms.
Collapse
Affiliation(s)
- E Barrez
- ENS Cachan, CNRS, Université Paris-Saclay, UMR 8531, PPSM, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 94235 Cachan, France.
| | | | | | | | | |
Collapse
|
43
|
Sasaki S, Watanabe T, Ishibashi Y, Fukaminato T, Asahi T. Giant Fluorescence Modulation Induced by UV–vis Excitation of Benzothiadiazole Nanoparticles Doped with Diarylethene Derivatives. CHEM LETT 2018. [DOI: 10.1246/cl.170973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shino Sasaki
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tomohiro Watanabe
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yukihide Ishibashi
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tuyoshi Fukaminato
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Asahi
- Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
44
|
Wei P, Zhang JX, Zhao Z, Chen Y, He X, Chen M, Gong J, Sung HHY, Williams ID, Lam JWY, Tang BZ. Multiple yet Controllable Photoswitching in a Single AIEgen System. J Am Chem Soc 2018; 140:1966-1975. [PMID: 29332386 DOI: 10.1021/jacs.7b13364] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seeking new methods to obtain elaborate artificial on-demand photoswitching with multiple functionalities remains challenging. Most of the systems reported so far possess only one specific function and their nonemissive nature in the aggregated state inevitably limit their applications. Herein, a tailored cyanostilbene-based molecule with aggregation-induced emission characteristic was synthesized and was found to exhibit efficient, multiple and controllable photoresponsive behaviors under different conditions. Specifically, three different reactions were involved: (i) reversible Z/E isomerization under room light and thermal treatment in CH3CN, (ii) UV-induced photocyclization with a concomitant dramatic fluorescence enhancement, and (iii) regio- and stereoselective photodimerization in aqueous medium with microcrystal formation. Experimental and theoretical analyses gave visible insights and detailed mechanisms of the photoreaction processes. Fluorescent 2D photopattern with enhanced signal-to-background ratio was fabricated based on the controllable "turn-on" and "turn-off" photobehaviors in different states. The present study thus paves an easy yet efficient way to construct smart multiphotochromes for unique applications.
Collapse
Affiliation(s)
- Peifa Wei
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing-Xuan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuewen He
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ming Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junyi Gong
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
45
|
Zhang R, Chouket R, Plamont MA, Kelemen Z, Espagne A, Tebo AG, Gautier A, Gissot L, Faure JD, Jullien L, Croquette V, Le Saux T. Macroscale fluorescence imaging against autofluorescence under ambient light. LIGHT, SCIENCE & APPLICATIONS 2018; 7:97. [PMID: 30510693 PMCID: PMC6261969 DOI: 10.1038/s41377-018-0098-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 05/07/2023]
Abstract
Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging.
Collapse
Affiliation(s)
- Ruikang Zhang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Raja Chouket
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Zsolt Kelemen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Saclay Plant Science (SPS), Université Paris-Saclay, Versailles, France
| | - Agathe Espagne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alison G. Tebo
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lionel Gissot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Saclay Plant Science (SPS), Université Paris-Saclay, Versailles, France
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Saclay Plant Science (SPS), Université Paris-Saclay, Versailles, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vincent Croquette
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris-Cité, Sorbonne Université, CNRS, 75005 Paris, France
- Institut de biologie de l’École normale supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
46
|
Pellissier-Tanon A, Chouket R, Le Saux T, Jullien L, Lemarchand A. Light-assisted dynamic titration: from theory to an experimental protocol. Phys Chem Chem Phys 2018; 20:23998-24010. [DOI: 10.1039/c8cp03953d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forced light oscillations are used to titrate any targeted species using its specific kinetics and choosing adapted control parameter values.
Collapse
Affiliation(s)
| | - Raja Chouket
- PASTEUR
- Département de Chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Thomas Le Saux
- PASTEUR
- Département de Chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Ludovic Jullien
- PASTEUR
- Département de Chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Annie Lemarchand
- Sorbonne Université
- Centre National de la Recherche Scientifique (CNRS) Laboratoire de Physique Théorique de la Matière Condensée (LPTMC)
- 75252 Paris Cedex 05
- France
| |
Collapse
|
47
|
Nakagawa T, Miyasaka Y, Yokoyama Y. Photochromism of a spiro-functionalized diarylethene derivative: multi-colour fluorescence modulation with a photon-quantitative photocyclization reactivity. Chem Commun (Camb) 2018; 54:3207-3210. [DOI: 10.1039/c8cc00566d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A spiro-functionalized photochromic diarylethene derivative showed multi-color fluorescence modulation with a photon-quantitative photocyclization reactivity.
Collapse
Affiliation(s)
- Tetsuya Nakagawa
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Hodogaya-ku
- Japan
| | - Yosuke Miyasaka
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Hodogaya-ku
- Japan
| | - Yasushi Yokoyama
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Hodogaya-ku
- Japan
| |
Collapse
|
48
|
Kundu A, Karthikeyan S, Sagara Y, Moon D, Anthony SP. Unusual fluorescent photoswitching of imidazole derivatives: the role of molecular conformation and twist angle controlled organic solid state fluorescence. Phys Chem Chem Phys 2018; 20:27385-27393. [DOI: 10.1039/c8cp05355c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triphenylamine-imidazole molecules exhibited unprecedented light induced fluorescence switching via conformational change.
Collapse
Affiliation(s)
- Anu Kundu
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | | | - Yoshimitsu Sagara
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
| | - Dohyun Moon
- Beamline Department
- Pohang Accelerator Laboratory
- Pohang
- Korea
| | | |
Collapse
|
49
|
Biellmann T, Galanti A, Boixel J, Wytko JA, Guerchais V, Samorì P, Weiss J. Fluorescence Commutation and Surface Photopatterning with Porphyrin Tetradithienylethene Switches. Chemistry 2017; 24:1631-1639. [DOI: 10.1002/chem.201704222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Biellmann
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Agostino Galanti
- University of Strasbourg; CNRS; ISIS UMR 7006; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Julien Boixel
- Institut des Sciences Chimiques de Rennes, UMR 6226 ; CNRS-Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes Cedex France
| | - Jennifer A. Wytko
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| | - Véronique Guerchais
- Institut des Sciences Chimiques de Rennes, UMR 6226 ; CNRS-Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes Cedex France
| | - Paolo Samorì
- University of Strasbourg; CNRS; ISIS UMR 7006; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean Weiss
- Institut de Chimie de Strasbourg; UMR 7177; CNRS-Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
50
|
Kashihara R, Morimoto M, Ito S, Miyasaka H, Irie M. Fluorescence Photoswitching of a Diarylethene by Irradiation with Single-Wavelength Visible Light. J Am Chem Soc 2017; 139:16498-16501. [DOI: 10.1021/jacs.7b10697] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ryota Kashihara
- Department
of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro
3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masakazu Morimoto
- Department
of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro
3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Syoji Ito
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiro Irie
- Department
of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro
3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|