1
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
2
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
3
|
Wei YF, Wang Y, Wei XR, Sun R, Xu YJ, Ge JF. Adenine-based small molecule fluorescent probe for imaging mitochondrial nucleic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117865. [PMID: 31813730 DOI: 10.1016/j.saa.2019.117865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
A small molecule fluorescent probe (probe 1) based on adenine-coumarin derivative was designed and synthesized in this paper. Probe 1 exhibited a significant fluorescence-enhancing response to nucleic acids at 495 nm (for DNA) and 487 nm (for RNA). The fluorescence enhancement of probe 1 for DNA and RNA was 5.68 and 9.73 times respectively, the fluorescence quantum yield was changed from 2.5% to 11.7% and 22.5% accordingly. Meanwhile, an excellent linear relationship of fluorescence intensity at 495 nm or 487 nm versus the nucleic acid concentration (1 μM for probe 1, 0-350 μg/mL for DNA and 0-300 μg/mL for RNA) was obtained. Co-staining and nucleic acid digestion experiments showed that probe 1 could selectively image nucleic acids in mitochondria and nucleoli in HeLa cells.
Collapse
Affiliation(s)
- Yu-Fang Wei
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Xue-Rui Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
4
|
Okamoto A. Next-generation fluorescent nucleic acids probes for microscopic analysis of intracellular nucleic acids. Appl Microsc 2019; 49:14. [PMID: 33580316 PMCID: PMC7818349 DOI: 10.1186/s42649-019-0017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Fluorescence imaging of nucleic acids is a very important technique necessary to understand gene expression and the resulting changes in cell function. This mini-review focuses on sequence-specific fluorescence imaging of intracellular RNA and methylated DNA using fluorescent nucleic acid probes. A couple of functional fluorescent nucleic acid probes developed by our laboratory are introduced and the examples of their application to fluorescence imaging of intracellular nucleic acids are described.
Collapse
Affiliation(s)
- Akimitsu Okamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
5
|
Shahmuradyan A, Moazami-Goudarzi M, Kitazume F, Espie GS, Krull UJ. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst 2018; 144:1223-1229. [PMID: 30534674 DOI: 10.1039/c8an01431k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A paper-based platform was investigated in which the selective detection of oligonucleotide targets by hybridization was accomplished via the enhancement of fluorescence emission from intrinsically labeled DNA probes that were immobilized on the surface of quantum dots (QDs). Multiple copies of a derivative of thiazole orange, an intercalating dye known to form non-emissive dimers, were conjugated to single-stranded oligonucleotide probes. Dimerization resulted in the formation of H-aggregates where excitonic interactions led to the suppression of fluorescence. The hybridization of the oligonucleotide probe with a complementary target resulted in the enhancement of fluorescence emission as the dimers dissociated and the dyes preferentially intercalated with the duplex. The detection of oligonucleotide targets using this configuration eliminated the need for labeling the target strands, and fluorescence intensity was proportional to the extent of hybridization. In addition, the dye molecules were excited using Foerster Resonance Energy Transfer (FRET) from QD donors, which resulted in improved selectivity and allowed for ratiometric detection. A solution-phase hybridization assay based on similar operational principles has been previously reported, and this new work investigated the advantages offered for this transduction scheme using paper-based solid-phase substrates. QD-probe conjugates were immobilized in sufficient density on the paper matrix to provide for multiple-donor-multiple-acceptor interactions that resulted in a 20-fold enhancement of acceptor emission compared to the solution-based assay, providing a limit of detection of 0.1 pmol. The paper-based assay provided for the reduction of the time needed for sample preparation and data acquisition, demonstrated that transduction was possible in a complex matrix (goat serum) without compromising on the performance observed in buffer solution, and that oligonucleotides generated from standard PCR amplification could be detected.
Collapse
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - Maryam Moazami-Goudarzi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Fasika Kitazume
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - George S Espie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| |
Collapse
|
6
|
Wang DO. Live Imaging of Nuclear RNPs in Mammalian Complex Tissue with ECHO-liveFISH. Methods Mol Biol 2018; 1649:259-272. [PMID: 29130203 DOI: 10.1007/978-1-4939-7213-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiplex RNA detection with fluorescence microscopy offers high spatial and temporal resolution required for addressing complex behaviors of RNA in living cells. Using chemically engineered linear oligonucleotide probes that emit fluorescence upon hybridization to target RNA, we have devised an imaging method suitable for studies of the dynamic regulation of nuclear RNPs, an important and yet poorly understood cellular pathway of gene expression. This new method labels specific sequences of RNA components in RNPs and thus avoids overexpression of fluorescent marker proteins that may result in entangled experimental results. Using this method, we observe in living brain tissue spatially constrained nuclear RNA foci under dynamic regulation in response to cellular transcriptional activity with individual cell heterogeneity.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8302, Japan.
| |
Collapse
|
7
|
Hayashi G, Tamai M, Okamoto A. Hybridization-sensitive Fluorescent Oligonucleotide Probe Conjugated with Cell-penetrating Peptides for Enhanced Cellular Uptake. CHEM LETT 2017. [DOI: 10.1246/cl.170813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Makoto Tamai
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904
| |
Collapse
|
8
|
Microfluidics-assisted fluorescence in situ hybridization for advantageous human epidermal growth factor receptor 2 assessment in breast cancer. J Transl Med 2017; 97:93-103. [PMID: 27892928 DOI: 10.1038/labinvest.2016.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/08/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is one of the recommended techniques for human epidermal growth factor receptor 2 (HER2) status assessment on cancer tissues. Here we develop microfluidics-assisted FISH (MA-FISH), in which hybridization of the FISH probes with their target DNA strands is obtained by applying square-wave oscillatory flows of diluted probe solutions in a thin microfluidic chamber of 5 μl volume. By optimizing the experimental parameters, MA-FISH decreases the consumption of the expensive probe solution by a factor 5 with respect to the standard technique, and reduces the hybridization time to 4 h, which is four times faster than in the standard protocol. To validate the method, we blindly conducted HER2 MA-FISH on 51 formalin-fixed paraffin-embedded tissue slides of 17 breast cancer samples, and compared the results with standard HER2 FISH testing. HER2 status classification was determined according to published guidelines, based on average number of HER2 copies per cell and average HER2/CEP17 ratio. Excellent agreement was observed between the two methods, supporting the validity of MA-FISH and further promoting its short hybridization time and reduced reagent consumption.
Collapse
|
9
|
Rapid nuclear import of short nucleic acids. Bioorg Med Chem Lett 2016; 26:4568-4570. [PMID: 27597250 DOI: 10.1016/j.bmcl.2016.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/12/2023]
Abstract
Exogenous short-chain nucleic acids undergo rapid import into the nucleus. Fluorescence-labeled dT1-13 DNA microinjected into the cytoplasm domain of a HeLa cell was rapidly imported into the nucleus domain within 1min. This is much more rapid than what has been observed for intracellular diffusion of small molecules. In contrast, import of longer nucleic acids with a length of over 30nt into the nucleus was suppressed.
Collapse
|
10
|
Ohmachi M, Fujiwara Y, Muramatsu S, Yamada K, Iwata O, Suzuki K, Wang DO. A modified single-cell electroporation method for molecule delivery into a motile protist, Euglena gracilis. J Microbiol Methods 2016; 130:106-111. [PMID: 27558617 DOI: 10.1016/j.mimet.2016.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
Single-cell transfection is a powerful technique for delivering chemicals, drugs, or probes into arbitrary, specific single cells. This technique is especially important when the analysis of molecular function and cellular behavior in individual microscopic organisms such as protists requires the precise identification of the target cell, as fluorescence labeling of bulk populations makes tracking of individual motile protists virtually impossible. Herein, we have modified current single-cell electroporation techniques for delivering fluorescent markers into single Euglena gracilis, a motile photosynthetic microalga. Single-cell electroporation introduced molecules into individual living E. gracilis cells after a negative pressure was applied through a syringe connected to the micropipette to the target cell. The new method achieves high transfection efficiency and viability after electroporation. With the new technique, we successfully introduced a variety of molecules such as GFP, Alexa Fluor 488, and exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) RNA probes into individual motile E. gracilis cells. We demonstrate imaging of endogenous mRNA in living E. gracilis without interfering with their physiological functions, such as swimming or division, over an extended period of time. Thus the modified single-cell electroporation technique is suitable for delivering versatile functional molecules into individual motile protists.
Collapse
Affiliation(s)
- Masashi Ohmachi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuki Muramatsu
- Research & Development Department, euglena Co., Ltd., Shiba, Minato-ku, Tokyo 108-0014, Japan
| | - Koji Yamada
- Research & Development Department, euglena Co., Ltd., Shiba, Minato-ku, Tokyo 108-0014, Japan
| | - Osamu Iwata
- Research & Development Department, euglena Co., Ltd., Shiba, Minato-ku, Tokyo 108-0014, Japan
| | - Kengo Suzuki
- Research & Development Department, euglena Co., Ltd., Shiba, Minato-ku, Tokyo 108-0014, Japan
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Qiu J, Wilson A, El-Sagheer AH, Brown T. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection. Nucleic Acids Res 2016; 44:e138. [PMID: 27369379 PMCID: PMC5041472 DOI: 10.1093/nar/gkw579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics.
Collapse
Affiliation(s)
- Jieqiong Qiu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Adam Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
12
|
Hövelmann F, Seitz O. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes. Acc Chem Res 2016; 49:714-23. [PMID: 26963493 DOI: 10.1021/acs.accounts.5b00546] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing importance assigned to RNA dynamics in cells and tissues calls for probe molecules that enable fluorescence microscopy imaging in live cells. To achieve this goal, fluorescence dyes are conjugated with oligonucleotides so as to provide strong emission upon hybridization with the target molecule. The impressive 10(3)-fold fluorescence intensification observed when DNA stains such as thiazole orange (TO) interact with double-stranded DNA is intriguing and prompted the exploration of oligonucleotide conjugates. However, nonspecific interactions of DNA stains with polynucleotides tend to increase background, which would affect the contrast achievable in live-cell imaging. This Account describes the development of DNA-stain-labeled hybridization probes that provide high signal-to-background. We focus on our contributions in context with related advances from other laboratories. The emphasis will be on the requirements of RNA imaging in live cells. To reduce background, intercalator dyes such as TO were appended to peptide nucleic acid (PNA), which is less avidly recognized by DNA stains than DNA/RNA. Constraining the TO dye as a nucleobase surrogate in "forced intercalation (FIT) probes" improved the target specificity, presumably by helping to prevent unspecific interactions. The enforcement of TO intercalation between predetermined base pairs upon formation of the probe-target duplex provided for high brightness and enabled match/mismatch selectivity beyond stringency of hybridization. We show examples that highlight the use of PNA FIT probes in the imaging of mRNA, miRNA, and lncRNA in living cells. The "FIT approach" was recently extended to DNA probes. Signal brightness can become limiting when low-abundance targets ought to be visualized over cellular autofluorescence. We discuss strategies that further the brightness of signaling by FIT probes. Multilabeling with identical dyes does not solve the brightness issue. To avoid self-quenching, we combined two different yet spectrally overlapping fluorescent base surrogates. A hybridization-sensitive dye serves as a light collector that transfers energy to a brightly emissive acceptor dye. To improve the brilliance of single-dye probes, the "TO-nucleotide" was accompanied by an adjacent locked nucleic acid (LNA) unit. The LNA-constrained FIT probes are responsive and bright, enabling the tracking of mRNA transport in living tissue. We also show that the color repertoire of FIT probes is not restricted to the green-emissive TO but can be expanded to cyan and red. A new base surrogate (4,4-linked bisquinoline) provided up to 195-fold enhancement of the fluorescence.
Collapse
Affiliation(s)
- Felix Hövelmann
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| |
Collapse
|
13
|
Shahmuradyan A, Krull UJ. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization. Anal Chem 2016; 88:3186-93. [DOI: 10.1021/acs.analchem.5b04536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
14
|
Okamoto A. Thiazole Orange-Tethered Nucleic Acids and ECHO Probes for Fluorometric Detection of Nucleic Acids. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Hövelmann F, Gaspar I, Chamiolo J, Kasper M, Steffen J, Ephrussi A, Seitz O. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem Sci 2016; 7:128-135. [PMID: 29861973 PMCID: PMC5950760 DOI: 10.1039/c5sc03053f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/01/2015] [Indexed: 01/04/2023] Open
Abstract
The simultaneous imaging of different RNA molecules in homogeneous solution is a challenge and requires optimisation to enable unambiguous staining of intracellular RNA targets. Our approach relies on single dye forced intercalation (FIT) probes, in which a visco-sensitive reporter of the thiazole orange (TO) family serves as a surrogate nucleobase and provides enhancements of fluorescence upon hybridisation. Previous FIT probes spanned the cyan and green emission range. Herein, we report for the first time chromophores for FIT probes that emit in the red range (above 600 nm). Such probes are valuable to overcome cellular auto-fluorescent background and enable multiplexed detection. In order to find suitable chromophores, we developed a submonomer approach that facilitated the rapid analysis of different TO family dyes in varied sequence positions. A carboxymethylated 4,4'-methine linked cyanine, which we named quinoline blue (QB), provided exceptional response characteristics at the 605 nm emission maximum. Exceeding previously reported base surrogates, the emission of the QB nucleotide intensified by up to 195-fold upon binding of complementary RNA. Owing to large extinction coefficients and quantum yields (up to ε = 129.000 L mol-1 cm-1 and Φ = 0.47, respectively) QB-FIT probes enable imaging of intracellular mRNA. A mixture of BO-, TO- and QB-containing FIT probes allowed the simultaneous detection of three different RNA targets in homogenous solution. TO- and QB-FIT probes were used to localize oskar mRNA and other polyadenylated mRNA molecules in developing oocytes from Drosphila melanogaster by means of wash-free fluorescent in situ hybridisation and super resolution microscopy (STED).
Collapse
Affiliation(s)
- F Hövelmann
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - I Gaspar
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - J Chamiolo
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - M Kasper
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - J Steffen
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - A Ephrussi
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - O Seitz
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| |
Collapse
|
16
|
Murayama K, Kamiya Y, Kashida H, Asanuma H. Ultrasensitive Molecular Beacon Designed with Totally Serinol Nucleic Acid (SNA) for Monitoring mRNA in Cells. Chembiochem 2015; 16:1298-301. [PMID: 25851922 DOI: 10.1002/cbic.201500167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/28/2022]
Abstract
An artificial nucleic acid based on acyclic serinol building blocks and termed "serinol nucleic acid" (SNA) was used to construct a fluorescent probe for RNA visualization in cells. The molecular beacon (MB) composed of only SNA with a fluorophore at one terminus and a quencher at the other was resistant to enzymatic digestion, due to its unnatural acyclic scaffold. The SNA-MB could detect its complementary RNA with extremely high sensitivity; the signal-to-background (S/B) ratio was as high as 930 when perylene and anthraquinone were used as the fluorophore and quencher pair. A high S/B ratio was also achieved with SNA-MB tethering the conventional Cy3 fluorophore, and this probe enabled selective visualization of target mRNA in fixed cells. Thus, SNA-MB has potential for use as a biological tool capable of visualizing RNA in living cells.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
- Venture business laboratory (VBL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
| | - Yukiko Kamiya
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
- Division of Green Conversion, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan).
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan).
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan).
| |
Collapse
|
17
|
Hayashi G, Yanase M, Takeda K, Sakakibara D, Sakamoto R, Wang DO, Okamoto A. Hybridization-sensitive fluorescent oligonucleotide probe conjugated with a bulky module for compartment-specific mRNA monitoring in a living cell. Bioconjug Chem 2015; 26:412-7. [PMID: 25710491 DOI: 10.1021/acs.bioconjchem.5b00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Live-cell RNA imaging at specific intracellular locations is technically limited because of the diffusive nature of small oligonucleotide probes. The bulky fluorescent light-up probes that possess streptavidin or gold nanoparticles at the end of oligonucleotides were designed and synthesized. The bulky probes allowed nucleus- and cytoplasm-selective monitoring of endogenous mRNAs through nuclear and cytoplasmic microinjection, respectively. Simultaneous use of bulky and unbulky probes conjugated with different fluorescent dyes enabled dual color imaging of mRNAs present in nucleus and cytoplasm. Furthermore, we observed that the fluorescence near the cell edge in a living HeLa cell traveled over time in coordination with the dynamic formation and deformation of the pseudopodial protrusions after lipofection of the bulky probes.
Collapse
Affiliation(s)
- Gosuke Hayashi
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masafumi Yanase
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuya Takeda
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Sakakibara
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Sakamoto
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Dan Ohtan Wang
- ‡Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akimitsu Okamoto
- †Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,§Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
18
|
Wang DO, Okamoto A. Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes. Methods Mol Biol 2015; 1262:69-87. [PMID: 25555576 DOI: 10.1007/978-1-4939-2253-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Engineered probes to adapt new photochemical properties upon recognition of target nucleic acids offer powerful tools to DNA and RNA visualization technologies. Herein, we describe a rapid and effective visualization method of nucleic acids in both fixed and living cells with hybridization-sensitive fluorescent oligonucleotide probes. These probes are efficiently quenched in an aqueous environment due to the homodimeric, excitonic interactions between fluorophores but become highly fluorescent upon hybridization to DNA or RNA with complementary sequences. The fast hybridization kinetics and quick fluorescence activation of the new probes allow applications to simplify the conventional fluorescent in situ hybridization protocols and reduce the amount of time to process the samples. Furthermore, hybridization-sensitive fluorescence emission of the probes allows monitoring dynamic behaviors of RNA in living cells.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan,
| | | |
Collapse
|
19
|
Hövelmann F, Gaspar I, Ephrussi A, Seitz O. Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc 2013; 135:19025-32. [PMID: 24295172 DOI: 10.1021/ja410674h] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorogenic oligonucleotides enable RNA imaging in cells and tissues. A high responsiveness of fluorescence is required when unbound probes cannot be washed away. Furthermore, emission should be bright in order to enable detection against autofluorescent background. The development of fluorescence-quenched hybridization probes has led to remarkable improvement of fluorescence responsiveness. Yet, comparably little attention has been paid to the brightness of smart probes. We describe hybridization probes that combine responsiveness with a high brightness of the measured signal. The method relies upon quencher-free DNA forced intercalation (FIT)-probes, in which two (or more) intercalator dyes of the thiazole orange (TO) family serve as nucleobase surrogates. Initial experiments on multi-TO-labeled probes led to improvements of responsiveness, but self-quenching limited their brightness. To enhance both brightness and responsiveness the highly responsive TO nucleoside was combined with the highly emissive oxazolopyridine analogue JO. Single-stranded TO/JO FIT-probes are dark. In the probe-target duplex, quenching caused by torsional twisting and dye-dye contact is prevented. The TO nucleoside appears to serve as a light collector that increases the extinction coefficient and transfers excitation energy to the JO emitter. This leads to very bright JO emission upon hybridization (F/F0 = 23, brightness = 43 mL mol(-1) cm(-1) at λex = 516 nm). TO/JO FIT-probes allowed the direct fluorescence microscopic imaging of oskar mRNA within a complex tissue. Of note, RNA imaging was feasible under wide-field excitation conditions. The described protocol enables rapid RNA imaging in tissue without the need for cutting-edge equipment, time-consuming washing, or signal amplification.
Collapse
Affiliation(s)
- Felix Hövelmann
- Institut für Chemie der Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Hanami T, Delobel D, Kanamori H, Tanaka Y, Kimura Y, Nakasone A, Soma T, Hayashizaki Y, Usui K, Harbers M. Eprobe mediated real-time PCR monitoring and melting curve analysis. PLoS One 2013; 8:e70942. [PMID: 23951046 PMCID: PMC3737233 DOI: 10.1371/journal.pone.0070942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/25/2013] [Indexed: 01/10/2023] Open
Abstract
Real-time monitoring of PCR is one of the most important methods for DNA and RNA detection widely used in research and medical diagnostics. Here we describe a new approach for combined real-time PCR monitoring and melting curve analysis using a 3' end-blocked Exciton-Controlled Hybridization-sensitive fluorescent Oligonucleotide (ECHO) called Eprobe. Eprobes contain two dye moieties attached to the same nucleotide and their fluorescent signal is strongly suppressed as single-stranded oligonucleotides by an excitonic interaction between the dyes. Upon hybridization to a complementary DNA strand, the dyes are separated and intercalate into the double-strand leading to strong fluorescence signals. Intercalation of dyes can further stabilize the DNA/DNA hybrid and increase the melting temperature compared to standard DNA oligonucleotides. Eprobes allow for specific real-time monitoring of amplification reactions by hybridizing to the amplicon in a sequence-dependent manner. Similarly, Eprobes allow for analysis of reaction products by melting curve analysis. The function of different Eprobes was studied using the L858R mutation in the human epidermal growth factor receptor (EGFR) gene, and multiplex detection was demonstrated for the human EGFR and KRAS genes using Eprobes with two different dyes. Combining amplification and melting curve analysis in a single-tube reaction provides powerful means for new mutation detection assays. Functioning as "sequence-specific dyes", Eprobes hold great promises for future applications not only in PCR but also as hybridization probes in other applications.
Collapse
Affiliation(s)
- Takeshi Hanami
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Diane Delobel
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | | | - Yuki Tanaka
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Yasumasa Kimura
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | | | - Takahiro Soma
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Kengo Usui
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Matthias Harbers
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- K.K. DNAFORM, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Hayashi G, Okamoto A. Probe design for the effective fluorescence imaging of intracellular RNA. CHEM REC 2013; 13:209-17. [PMID: 23495145 DOI: 10.1002/tcr.201200026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Indexed: 01/18/2023]
Abstract
Over the past two decades, the spatiotemporal analysis of fluorescently labeled single RNA species has provided a broad insight into the synthesis, localization, degradation, and transport of RNA. To elucidate the dynamic behavior of functional RNAs in living cells, researchers throughout the world have proposed numerous fluorometric strategies for intracellular RNA imaging. Because, like most other biological molecules, RNA is intrinsically nonfluorescent, the development of methods for the labeling of RNAs of interest with fluorescent molecules is essential. Several artificial tag sequences have been attached onto the 3' end of target RNAs and used as scaffolds for interacting with their fluorescent counterparts. In this Personal Account, we focus on the methods that have been developed to show how RNAs expressed in cells can be labeled and visualized by fluorescent proteins, small molecules, or nucleic acids. Each of these methods is designed to increase the sensitivity and specificity for imaging or to decrease the background fluorescence.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8904, Japan
| | | |
Collapse
|
22
|
Okamoto A, Sugizaki K, Yuki M, Yanagisawa H, Ikeda S, Sueoka T, Hayashi G, Wang DO. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging. Org Biomol Chem 2012; 11:362-71. [PMID: 23172393 DOI: 10.1039/c2ob26707a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.
Collapse
Affiliation(s)
- Akimitsu Okamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | | | | | | | | | |
Collapse
|