1
|
Zhao N, Song M, Zhang X, Xu W, Liu X. Nanodiamond Coating in Energy and Engineering Fields: Synthesis Methods, Characteristics, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401292. [PMID: 38726946 DOI: 10.1002/smll.202401292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Indexed: 10/04/2024]
Abstract
Nanodiamonds are metastable allotropes of carbon. Based on their high hardness, chemical inertness, high thermal conductivity, and wide bandgap, nanodiamonds are widely used in energy and engineering applications in the form of coatings, such as mechanical processing, nuclear engineering, semiconductors, etc., particularly focusing on the reinforcement in mechanical performance, corrosion resistance, heat transfer, and electrical behavior. In mechanical performance, nanodiamond coatings can elevate hardness and wear resistance, improve the efficiency of mechanical components, and concomitantly reduce friction, diminish maintenance costs, particularly under high-load conditions. Concerning chemical inertness and corrosion resistance, nanodiamond coatings are gradually becoming the preferred manufacturing material or surface modification material for equipment in harsh environments. As for heat transfer, the extremely high coefficient of thermal conductivity of nanodiamond coatings makes them one of the main surface modification materials for heat exchange equipment. The increase of nucleation sites results in excellent performance of nanodiamond coatings during the boiling heat transfer stage. Additionally, concerning electrical properties, nanodiamond coatings elevate the efficiency of solar cells and fuel cells, and great performance in electrochemical and electrocatalytic is found. This article will briefly describe the application and mechanism analysis of nanodiamonds in the above-mentioned fields.
Collapse
Affiliation(s)
- Ningkang Zhao
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meiqi Song
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xifang Zhang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Xu
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojing Liu
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Wang X, Krause P, Kirschbaum T, Palczynski K, Dzubiella J, Bande A. Photo-excited charge transfer from adamantane to electronic bound states in water. Phys Chem Chem Phys 2024; 26:8158-8176. [PMID: 38380443 DOI: 10.1039/d3cp04602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aqueous nanodiamonds illuminated by UV light produce free solvated electrons, which may drive high-energy reduction reactions in water. However, the influence of water conformations on the excited-state electron-transfer mechanism are still under debate. In this work, we offer a theoretical study of charge-transfer states in adamantane-water structures obtained by linear-response time-dependent density-functional theory. Small water clusters with broken hydrogen bonds are found to efficiently bind the electron from adamantane. A distinction is made with respect to the nature of the water clusters: some bind the electron in a water cavity, others along a strong permanent total dipole. These two types of bound states are more strongly binding, the higher their electron affinity and their positive electrostatic potential, the latter being dominated by the energy of the lowest unoccupied molecular orbital of the isolated water clusters. Structural sampling in a thermal equilibrium at room temperature via molecular dynamics snapshots confirms under which conditions the underlying waters clusters can occur and verifies that broken hydrogen bonds in the water network close to adamantane can create traps for the solvated electron.
Collapse
Affiliation(s)
- Xiangfei Wang
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pascal Krause
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Mathematics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karol Palczynski
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Joachim Dzubiella
- Applied Theoretical Physics - Computational Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, 79104 Freiburg, Germany.
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167 Hannover, Germany
| |
Collapse
|
3
|
Handschuh-Wang S, Wang T, Tang Y. Ultrathin Diamond Nanofilms-Development, Challenges, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007529. [PMID: 34041849 DOI: 10.1002/smll.202007529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Diamond is a highly attractive material for ample applications in material science, engineering, chemistry, and biology because of its favorable properties. The advent of conductive diamond coatings and the steady demand for miniaturization in a plethora of economic and scientific fields resulted in the impetus for interdisciplinary research to develop intricate deposition techniques for thin (≤1000 nm) and ultra-thin (≤100 nm) diamond films on non-diamond substrates. By virtue of the lowered thickness, diamond coatings feature high optical transparency in UV-IR range. Combined with their semi-conductivity and mechanical robustness, they are promising candidates for solar cells, optical devices, transparent electrodes, and photochemical applications. In this review, the difficulty of (ultra-thin) diamond film development and production, introduction of important stepping stones for thin diamond synthesis, and summarization of the main nucleation procedures for diamond film synthesis are elucidated. Thereafter, applications of thin diamond coatings are highlighted with a focus on applications relying on ultrathin diamond coatings, and the excellent properties of the diamond exploited in said applications are discussed, thus guiding the reader and enabling the reader to quickly get acquainted with the research field of ultrathin diamond coatings.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Tao Wang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
4
|
Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141527. [PMID: 33113672 DOI: 10.1016/j.scitotenv.2020.141527] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of chemical compounds are used in human activities; however, part of these compounds reach surface water, groundwater and even water considered for potable uses. Due to the limited efficiency of water treatment by the Water and Wastewater Treatment Plants, the presence of these compounds in natural and human consumption waters can be very harmful due to their high persistence and adverse effects; these characteristics define the contaminants of emerging concern (CECs). Water treatment by Electrochemical Advanced Oxidation Processes (EAOPs) has been evaluated as a promising process for the removal of persistent and recalcitrant organic contaminants. With this background, the present review aims to gather studies and information published between 2015 and 2020 regarding the occurrence of CECs in surface, potable and groundwater, its treatment by EAOPs, the main operating conditions and by-product generation of EAOPs, contaminant toxicity assessments and international statutory guideline values concerning CEC standards and allowable concentrations in the environment and treated drinking water. Therefore, in this review it was found that the compounds bisphenol A (BPA), diethyltoluamide (DEET), 17α-ethinyl estradiol (EE2), perfluorobutanoic acid (PFBA), carbamazepine, caffeine and atrazine were the most frequently detected in water sources, with concentrations ranging from 35.54-4800, 1.21-98, 0.005-38.5, 5-742.904, 0.0071-586, 0.89-1040, and 100-323 (ng L-1), respectively. Among the operational conditions of EAOPs, current density, pH and oxidant concentration are the main operational parameters that have an influence on these treatment technologies, besides the by-products generated, which might be removed by the integration of EAOPs with biological digestion treatments. Regarding the values of water quality standards, many CECs do not have established standard allowable concentration values, which represents a concern toward the possible toxic effects of these compounds on non-target organisms.
Collapse
Affiliation(s)
- Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil.
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Renata M de Souza
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Heloise B Quesada
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Rosângela Bergamasco
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Aline T Baptista
- Academic Department of Food and Chemical Engineering, Federal Technology University of Parana - UTFPR, Via Rosalina Maria dos Santos, 1233.CEP 87301-899 - Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| |
Collapse
|
5
|
Ozkan S, Ghanem H, Mohajernia S, Hejazi S, Fromm T, Borchardt R, Rosiwal S, Schmuki P. Boron‐Doped Diamond as an Efficient Back Contact to Thermally Grown TiO
2
Photoelectrodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201901073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Selda Ozkan
- Department of Materials Science and Engineering, WW4-LKO University of Erlangen-Nuremberg Martensstrasse 7 D-91058 Erlangen Germany
| | - Hanadi Ghanem
- Department of Materials Science and Engineering, WW2-WTM University of Erlangen-Nuremberg Martensstrasse 5 D-91058 Erlangen Germany
| | - Shiva Mohajernia
- Department of Materials Science and Engineering, WW4-LKO University of Erlangen-Nuremberg Martensstrasse 7 D-91058 Erlangen Germany
| | - Seyedsina Hejazi
- Department of Materials Science and Engineering, WW4-LKO University of Erlangen-Nuremberg Martensstrasse 7 D-91058 Erlangen Germany
| | - Timo Fromm
- Department of Materials Science and Engineering, WW2-WTM University of Erlangen-Nuremberg Martensstrasse 5 D-91058 Erlangen Germany
| | - Rudolf Borchardt
- Department of Materials Science and Engineering, WW2-WTM University of Erlangen-Nuremberg Martensstrasse 5 D-91058 Erlangen Germany
| | - Stefan Rosiwal
- Department of Materials Science and Engineering, WW2-WTM University of Erlangen-Nuremberg Martensstrasse 5 D-91058 Erlangen Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, WW4-LKO University of Erlangen-Nuremberg Martensstrasse 7 D-91058 Erlangen Germany
- Chemistry Department King Abdulaziz University 80203 Jeddah Saudi Arabia Kingdom
| |
Collapse
|
6
|
Mavrokefalos CK, Hasan M, Rohan JF, Foord JS. Enhanced Mass Activity and Stability of Bimetallic Pd-Ni Nanoparticles on Boron-Doped Diamond for Direct Ethanol Fuel Cell Applications. ChemElectroChem 2017. [DOI: 10.1002/celc.201701105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christos K. Mavrokefalos
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road, Oxford OX1 3TA England UK
| | - Maksudul Hasan
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road, Oxford OX1 3TA England UK
- Tyndall National Institute; University College Cork; Lee Maltings Cork Ireland
| | - James F. Rohan
- Tyndall National Institute; University College Cork; Lee Maltings Cork Ireland
| | - John S. Foord
- Department of Chemistry, Chemistry Research Laboratory; University of Oxford; Mansfield Road, Oxford OX1 3TA England UK
| |
Collapse
|