1
|
Hashimoto T, Hoz Tomás MDL, Oketani R, Cohen B, Naruoka M, Tohnai N, Douhal A, Hisaki I. Single Crystalline, Non-Stoichiometric Hydrogen-Bonded Organic Frameworks Showing Versatile Fluorescence Depending on Composition Ratios and Distributions. Angew Chem Int Ed Engl 2024:e202419992. [PMID: 39586783 DOI: 10.1002/anie.202419992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) composed of multicomponent molecules in a non-stoichiometric composition have drawn great interest due to their tunable properties. However, the photobehavior of the single crystals of such mixed HOFs has not been explored. Here, we report on the synthesis, characterization and photobehavior of single crystalline non-stoichiometric HOFs (NS-HOFs). NS-HOFs (BTNT-1) with various composition ratios were successfully obtained as single crystals from two analogue tetratopic carboxylic acids, possessing naphthalene and benzothiadiazole cores (NTTA and BTTA, respectively). The heterogeneous distribution of the components was thoroughly confirmed by time-resolved fluorescence microscopy and local crystallographic analysis using focused synchrotron X-ray radiation. The versatile fluorescence of BTNT-1 behavior depends on the composition ratio and distribution of the component in the single crystals. We observed not only fluorescence bands with various colors such as purple, blue, green and white, depending on the composition ratios, but also different emission bands from a single crystal. We provide details on their emission lifetimes following the composition, emission color and targeted region on the crystal. This work is the first example of single crystal studies applied to organic porous co-crystals and demonstrates unique and versatile optical properties of carboxylic acid-based NS-HOFs. The results provide a concept of creating functional mixed porous materials capable of different and tunable optical properties.
Collapse
Affiliation(s)
- Taito Hashimoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Miki Naruoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
2
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
4
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
6
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
7
|
Li M, Zhang T, Shi Y, Duan C. Harnessing Radicals in Confined Supramolecular Environments Made Possible by MOFs. CHEM REC 2023; 23:e202300158. [PMID: 37310416 DOI: 10.1002/tcr.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Researching and utilizing radical intermediates in organic synthetic chemistry have innovated discoveries in methodology and theory. Reactions concerning free radical species opened new pathways beyond the frame of the two-electron mechanism while commonly characterized as rampant processes lacking selectivity. As a result, research in this field has always focused on the controllable generation of radical species and determining factors of selectivity. Metal-organic frameworks (MOFs) have emerged as compelling candidates as catalysts in radical chemistry. From a catalytic point of view, the porous nature of MOFs entails an inner phase for the reaction that could offer possibilities for the regulation of reactivity and selectivity. From a material science perspecti ve, MOFs are organic-inorganic hybrid materials that integrate functional units in organic compounds and complex forms in the tunable long-ranged periodic structure. In this account, we summarized our progress in the application of MOFs in radical chemistry in three parts: (1) The generation of radical species; (2) The weak interactions and site selectivity; (3) Regio- and stereo-selectivity. The unique role of MOFs play in these paradigms is demonstrated in a supramolecular narrative through the analyses of the multi-constituent collaboration within the MOF and the interactions between MOFs and the intermediates during the reactions.
Collapse
Affiliation(s)
- Mochen Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Păun C, Motelică L, Ficai D, Ficai A, Andronescu E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6143. [PMID: 37763421 PMCID: PMC10532503 DOI: 10.3390/ma16186143] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This review article explores the multiple applications and potential of metal-organic frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties, MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal geometry playing critical roles. MOFs' ability to encapsulate drugs and exhibit pH-triggered release makes them ideal candidates for precision medicine, including cancer treatment. They are also potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents for magnetic resonance imaging. Despite the complexities encountered in modulating properties and interactions with biological systems, further research on MOFs is imperative. The primary focus of this review is to provide a comprehensive examination of MOFs in these applications, highlighting the current achievements and complexities encountered. Such efforts will uncover their untapped potential in creating innovative tools for biomedical applications, emphasizing the need to invest in the continued exploration of this promising field.
Collapse
Affiliation(s)
- Cătălin Păun
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ludmila Motelică
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| |
Collapse
|
9
|
Mohebali H, Moussavi G, Karimi M, Giannakis S. Development of a magnetic Ce-Zr bimetallic MOF as an efficient catalytic ozonation mediator: Preparation, characterization, and catalytic activity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
de la Hoz Tomás M, Yamaguchi M, Cohen B, Hisaki I, Douhal A. Deciphering the ultrafast dynamics of a new tetraphenylethylene derivative in solutions: charge separation, phenyl ring rotation and CC bond twisting. Phys Chem Chem Phys 2023; 25:1755-1767. [PMID: 36594826 DOI: 10.1039/d2cp05220b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraphenylethylene (TPE) derivatives are one of the fundamental units for developing aggregation induced emission (AIE) scaffolds. However, the underlying mechanisms implicated in the relaxation of the excited TPE remain a topic of ongoing discussion, while the effect of bulky substituents on its photobehaviour is still under scrutiny. Here, we report a detailed study of the photophysical properties of a new symmetrical and bulky TPE derivative with terphenyl groups (TTECOOBu) in solvents of different polarities and viscosities. Using femto- to nanosecond (fs-ns) time-resolved absorption and emission techniques, we elucidated the role of the phenyl group rotations and core ethylene bond twisting in its behaviour. We demonstrate that TTECOOBu in DCM solutions undergoes a 600 fs charge separation along the ethylene bond leading to a resonance structure with a lifetime of ∼1 ns. The latter relaxes via two consecutive events: a twisting of the ethylene bond (∼ 9 ps) and a rotation of the phenyl rings (∼ 30 ps) leading to conformationally-relaxed species with a largely Stokes-shifted emission (∼ 12 500 cm-1). The formation of the red-emitting species clearly depends on the solvent viscosity and rigidity of the medium. Contrary to the photobehavior in the highly viscous triacetin or rigid polymer matrix of PMMA, a reversible mechanism was observed in DCM and DMF solutions. These results provide new findings on the ultrafast mechanisms of excited TPE derivatives and should help in the development of new molecular rotors with interesting AIE properties for photonic applications.
Collapse
Affiliation(s)
- Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Mao Yamaguchi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
11
|
Sánchez F, Gutiérrez M, Douhal A. Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42656-42670. [PMID: 36067454 DOI: 10.1021/acsami.2c10573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent metal-organic frameworks (LMOFs) are one of the most promising materials for being implemented as active layers in the fabrication of photonic devices such as luminescent sensors of harmful chemicals. It is highly desirable that these materials undergo quantifiable spectroscopic (absorption or emission) changes in the presence of vapors of those analytes, as in many industrial processes, these toxic compounds are in the gas phase. Although great progresses have been achieved in the field, in most of the examples reported hitherto, the detection of chemicals by LMOFs is attained in solution. Herein, we present a novel approach consisting of the encapsulation of proton transfer dyes (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS, and 3-hydroxyflavone, 3-HF) within the pores of two distinct MOFs. The trapped proton transfer dyes (PT-dyes) may exist as different structures (enol, anion, or zwitterion), each of these exhibiting unique optical properties. Indeed, our findings reveal that the dyes can be encapsulated as anionic or enol species. Remarkably, the PT-dye@MOF composites exhibit a high luminescence quantum yield (up to 30%), which is sensitive (showing shifting in the emission wavelengths with a concomitant quenching/enhancement of the intensity) in the presence of vapors of an acid (HCl) and a base (triethylamine). These results open a novel avenue for the development of smarter vapoluminescent MOF-based materials.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| |
Collapse
|
12
|
Perego J, Bezuidenhout CX, Villa I, Cova F, Crapanzano R, Frank I, Pagano F, Kratochwill N, Auffray E, Bracco S, Vedda A, Dujardin C, Sozzani PE, Meinardi F, Comotti A, Monguzzi A. Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications. Nat Commun 2022; 13:3504. [PMID: 35715391 PMCID: PMC9205964 DOI: 10.1038/s41467-022-31163-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Large Stokes shift fast emitters show a negligible reabsorption of their luminescence, a feature highly desirable for several applications such as fluorescence imaging, solar-light managing, and fabricating sensitive scintillating detectors for medical imaging and high-rate high-energy physics experiments. Here we obtain high efficiency luminescence with significant Stokes shift by exploiting fluorescent conjugated acene building blocks arranged in nanocrystals. Two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating crystalline hetero-ligand metal-organic framework (MOF) nanocrystals. The diffusion of singlet excitons within the MOF and the matching of ligands absorption and emission properties enables an ultrafast activation of the low energy emission in the 100 ps time scale. The hybrid nanocrystals show a fluorescence quantum efficiency of ~60% and a Stokes shift as large as 750 meV (~6000 cm−1), which suppresses the emission reabsorption also in bulk devices. The fabricated prototypal nanocomposite fast scintillator shows benchmark performances which compete with those of some inorganic and organic commercial systems. The development of highly luminescent materials such as large Stokes shift fast emitters is desirable for their potential application in photonics. Here the authors engineer hetero-ligand metal-organic frameworks nanoparticles to achieve high emission yield, large Stokes shift and realize a prototypal fast scintillator.
Collapse
Affiliation(s)
- J Perego
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - Charl X Bezuidenhout
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - I Villa
- FZU Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - F Cova
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - R Crapanzano
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - I Frank
- CERN, Geneva, Switzerland.,Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, Munich, Germany
| | - F Pagano
- CERN, Geneva, Switzerland.,Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - N Kratochwill
- CERN, Geneva, Switzerland.,University of Vienna, Vienna, Austria
| | | | - S Bracco
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - A Vedda
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - C Dujardin
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | - P E Sozzani
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - F Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy
| | - A Comotti
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy.
| | - A Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, via R. Cozzi 55, 20125, Milano, Italy.
| |
Collapse
|
13
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
14
|
di Nunzio MR, Suzuki Y, Hisaki I, Douhal A. HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. Int J Mol Sci 2022; 23:1929. [PMID: 35216044 PMCID: PMC8875020 DOI: 10.3390/ijms23041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) have attracted renewed attention as another type of promising candidates for functional porous materials. In most cases of HOF preparation, the applied molecular design principle is based on molecules with rigid π-conjugated skeleton together with more than three H-bonding groups to achieve 2D- or 3D-networked structures. However, the design principle does not always work, but results in formation of unexpected structures, where subtle structural factors of which we are not aware dictate the entire structure of HOFs. In this contribution, we assess recent advances in HOFs, focusing on those composed of hexatopic building block molecules, which can provide robust frameworks with a wide range of topologies and properties. The HOFs described in this work are classified into three types, depending on their H-bonded structural motifs. Here in, we focus on: (1) the chemical aspects that govern their unique fundamental chemistry and structures; and (2) their photophysics at the ensemble and single-crystal levels. The work addresses and discusses how these aspects affect and orient their photonic applicability. We trust that this contribution will provide a deep awareness and will help scientists to build up a systematic series of porous materials with the aim to control both their structural and photodynamical assets.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| | - Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| |
Collapse
|
15
|
Martin C, Jonckheere D, Coutino-Gonzalez E, Smolders S, Bueken B, Marquez C, Krajnc A, Willhammar T, Kennes K, Fenwick O, Richard F, Samorì P, Mali G, Hofkens J, Roeffaers MBJ, De Vos DE. Metal-biomolecule frameworks (BioMOFs): a novel approach for "green" optoelectronic applications. Chem Commun (Camb) 2022; 58:677-680. [PMID: 34919109 DOI: 10.1039/d1cc05214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a water-stable microcrystalline bioMOF was synthesized, characterized, and loaded with silver ions or highly emissive rare earth (RE) metals such as Eu3+/Tb3+. The obtained materials were used as active layers in a proof-of-concept sustainable light-emitting device, highlighting the potential of bioMOFs in optoelectronic applications.
Collapse
Affiliation(s)
- Cristina Martin
- KU Leuven, Leuven Chem&Tech - Molecular Imaging and Photonics (MIP), Celestijnenlaan 200F post box 2404, Leuven 3001, Belgium.
- Unidad nanoCRIB, Centro Regional de Investigaciones Biomédicas, Albacete, 02071, Spain
| | - Dries Jonckheere
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| | - Eduardo Coutino-Gonzalez
- Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Colonia Lomas del Campestre, León, Guanajuato 37150, Mexico
| | - Simon Smolders
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| | - Bart Bueken
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| | - Carlos Marquez
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Tom Willhammar
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm 106 91, Sweden
| | - Koen Kennes
- KU Leuven, Leuven Chem&Tech - Molecular Imaging and Photonics (MIP), Celestijnenlaan 200F post box 2404, Leuven 3001, Belgium.
| | - Oliver Fenwick
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Fanny Richard
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Johan Hofkens
- KU Leuven, Leuven Chem&Tech - Molecular Imaging and Photonics (MIP), Celestijnenlaan 200F post box 2404, Leuven 3001, Belgium.
| | - Maarten B J Roeffaers
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| | - Dirk E De Vos
- KU Leuven, Leuven Chem&Tech - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F post box 2454, Leuven 3001, Belgium.
| |
Collapse
|
16
|
Yan X, Lei J, Li YP, Zhang P, Wang Y, Li SN, Zhai QG. Modulating fluorescence sensing properties of excited-state intramolecular proton transfer (ESIPT)-based metal organic frameworks (MOFs) by metal polarization. CrystEngComm 2022. [DOI: 10.1039/d2ce00047d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MIL-53-Al/Ga/In fluorescent probes are constructed by adjusting the influence of metal centers on the ESIPT process in MOFs and experimental results indicate that the weaker the metal polarization, the stronger the sensor sensitivity.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Jiao Lei
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Institute of Applied Catalysis, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
17
|
di Nunzio MR, Gutiérrez M, Moreno JM, Corma A, Díaz U, Douhal A. Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing. Int J Mol Sci 2021; 23:ijms23010330. [PMID: 35008756 PMCID: PMC8745538 DOI: 10.3390/ijms23010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
In this contribution, we report on the solid-state-photodynamical properties and further applications of a low dimensional composite material composed by the luminescent trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye interacting with a two-dimensional-metal organic framework (2D-MOF), Al-ITQ-HB. Three different samples with increasing concentration of DCM are synthesized and characterized. The broad UV-visible absorption spectra of the DCM/Al-ITQ-HB composites reflect the presence of different species of DCM molecules (monomers and aggregates). In contrast, the emission spectra are narrower and exhibit a bathochromic shift upon increasing the DCM concentration, in agreeance with the formation of adsorbed aggregates. Time-resolved picosecond (ps)-experiments reveal multi-exponential behaviors of the excited composites, further confirming the heterogeneous nature of the samples. Remarkably, DCM/Al-ITQ-HB fluorescence is sensitive to vapors of electron donor aromatic amine compounds like aniline, methylaniline, and benzylamine due to a H-bonding-induced electron transfer (ET) process from the analyte to the surface-adsorbed DCM. These findings bring new insights on the photobehavior of a well-known dye when interacting with a 2D-MOF and its possible application in sensing aniline derivatives.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
| | - José María Moreno
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain; (J.M.M.); (A.C.); (U.D.)
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain; (M.R.d.N.); (M.G.)
- Correspondence:
| |
Collapse
|
18
|
di Nunzio MR, Hisaki I, Douhal A. HOFs under light: Relevance to photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Synthesis and Photobehavior of a NewDehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. Int J Mol Sci 2021; 22:ijms22094803. [PMID: 33946609 PMCID: PMC8124357 DOI: 10.3390/ijms22094803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~0.4 ns), a charge-transfer state (S1(CT), ~2 ns), and a room temperature emissive triplet state (T1, ~20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.
Collapse
|
20
|
A biocompatible Zr-based metal-organic framework UiO-66-PDC as an oral drug carrier for pH-response release. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121805] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Deciphering the photobehaviour of ensemble and single crystals of Zr-based ITQ MOF composites. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Chen MH, Lu QY, Li YM, Chu MM, Cao XB. ZnO@ZIF-8 core–shell heterostructures with improved photocatalytic activity. CrystEngComm 2021. [DOI: 10.1039/d1ce00559f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnO@ZIF-8 heterostructures with ZnO as the core and ZIF-8 as the shell were successfully fabricated and completely degraded methylene blue in ∼4.5 min under solar light irradiation.
Collapse
Affiliation(s)
- Mei-Hua Chen
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Qian-Ying Lu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Yi-Ming Li
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Ming-Ming Chu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Xue-Bo Cao
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| |
Collapse
|
23
|
Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push-Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. Int J Mol Sci 2020; 21:ijms21124366. [PMID: 32575438 PMCID: PMC7352538 DOI: 10.3390/ijms21124366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The design of improved organic linkers for the further engineering of smarter metal–organic framework (MOF) materials has become a paramount task for a wide number of material scientists. In this report, a luminescent double-functionalized push–pull (electron donor–acceptor) archetype organic molecule, dimethyl 4-amino-8-cyanonaphthalene-2,6-dicarboxylate (Me2CANADC), has been synthesized and characterized. The optical steady-state properties of Me2CANADC are strongly influenced by the surrounding environment as a direct consequence of its strong charge transfer (CT) character. The relaxation from its first electronically excited singlet state follows a double pathway: (1) on one side deactivating from its local excited (LE) state in the sub-picosecond or picosecond time domain, and (2) on the other side undergoing an ultrafast intramolecular charge transfer (ICT) reaction that is slowing down in viscous solvents. The deactivation to the ground state of these species with CT character is the origin of the Me2CANADC luminescence, and they present solvent-dependent lifetime values ranging from 8 to 18 ns. The slow photodynamics of Me2CANADC unveils the coexistence of a non-emissive triplet excited state and the formation of a long-lived charge separated state (2 µs). These observations highlight the promising optical properties of Me2CANADC linker, opening a window for the design of new functional MOFs with huge potential to be applied in the fields of luminescent sensing and optoelectronics.
Collapse
|