1
|
Ullah R, Siraj M, Iqbal J, Abbasi BA. Potential of curcumin and its derivatives, modern insights on the anticancer properties: a comprehensive overview. Z NATURFORSCH C 2025:znc-2024-0220. [PMID: 40108840 DOI: 10.1515/znc-2024-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Globally, cancer is the top cause of mortality, placing a heavy load on the medical system. One of the first known secondary metabolites is curcumin, a bioactive substance. This study aims to emphasize the chemopreventive and chemotherapeutic properties of curcumin and its derivatives, therefore, offering important insights for the possible creation of certain supplemental medications for the treatment of different cancers. Electronic Google databases, including Google scholar, ResearchGate, PubMed/Medline, and ScienceDirect, were searched to gather pertinent data about the chemopreventive and chemotherapeutic effects of curcumin and its derivatives. Various studies have revealed a diverse array of significant biological effects. The majority of investigations pertaining to the potential anticancer effects and associated processes are currently in the experimental preclinical stage and lack sufficient clinical trial data to validate their findings. Clinical research is further needed to clarify the molecular processes and specific targeted action of curcumin and its derivatives, as well as their potential for toxicity and side effects in humans, in order to open up new therapeutic avenues for treating cancer.
Collapse
Affiliation(s)
- Rafi Ullah
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Siraj
- IBGE, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| |
Collapse
|
2
|
Chen Y, Huang J, Zhou Z, Zhang J, Jin C, Zeng X, Jia J, Li L. Noise exposure-induced the cerebral alterations: From emerging evidence to antioxidant-mediated prevention and treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117411. [PMID: 39591731 DOI: 10.1016/j.ecoenv.2024.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
It's well acknowledged that noise exposure has become a major environmental risk factor of public health. The previous standpoint holds that the main harm of noise exposure is to cause hearing loss of human. However, in the past two decades a large number of studies have linked the noise exposure to various cerebral changes. In this review, we summarized that noise exposure led to cerebral changes through breaking the redox balance, inducing neuroinflammation and neuronal apoptosis and altering the neurotransmission in numerous brain areas, including cortex, thalamus, hippocampus, amygdala, striatum and cerebellum. Those cerebral changes finally result in a variety of disorders, such as tinnitus, anxiety, depression, cognitive impairment and motor dysfunction. Furthermore, we reviewed several antioxidants, such as resveratrol, vitamin C, curcumin, N-acetylcysteine and α-asarone, and highlighted their protective mechanisms against noise exposure, aiming to provide a promising strategy to prevent and treat noise exposure-induced diseases. Taken together, noise exposure induces various cerebral changes and further leads to disorders in the central nervous system, which can be ameliorated by the treatment with antioxidants.
Collapse
Affiliation(s)
- Yuyan Chen
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Zhiying Zhou
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Chaohui Jin
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China; Judicial Expertise Center, Jiaxing University, Jiaxing, China.
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| |
Collapse
|
3
|
Doostkam A, Iravani K, Malekmakan L, Gholamabbas G, Roozbeh J, Soltaniesmaeili A. The effectiveness of curcumin as a safe agent on hearing threshold improvement in patients with chronic kidney disease: a double-blind, placebo-controlled trial. Sci Rep 2024; 14:17576. [PMID: 39079962 PMCID: PMC11289080 DOI: 10.1038/s41598-024-68572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Hearing impairment in patients with chronic kidney disease (CKD), can affect the quality of life. At present, hearing dysfunction does not have an approved pharmacologic therapy. This study aimed to investigate the protective effects and possible mechanisms of curcumin as a therapeutic agent on hearing impairment in patients with chronic kidney disease. We conducted a randomized controlled trial of 40 chronic kidney disease patients not on dialysis with hearing impairment. Participants were randomly divided into two groups. One group received curcumin daily and the other received a placebo for 12 weeks. The interval between III and V waves, latency of wave V, auditory brain stem response (ABR) threshold, speech reception threshold (SRT), and speech discrimination score (SDS) were evaluated and analyzed before and after the intervention. After treatment, in the curcumin group, III-V waves interval and the latency of wave V were significantly reduced (P value < 0.0001), also ABR threshold was demonstrated a significant improvement (P value < 0.0001). In the trial group, the SDS was increased (P = 0.001) and the SRT was attenuated (P < 0.0001). We had either significant deterioration due to the course of the disease or insignificant changes in the placebo group. Daily administration of curcumin, can significantly improve hearing impairment in CKD patients. Accordingly, curcumin should be considered as a therapeutic option for treating hearing impairment in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamyar Iravani
- Department of Otolaryngology, Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Gholamabbas
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Soltaniesmaeili
- Department of Otolaryngology, Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
5
|
YAMAGUCHI T, YONEYAMA M, ONAKA Y, OGITA K. A novel model of sensorineural hearing loss induced by repeated exposure to moderate noise in mice: the preventive effect of resveratrol. J Vet Med Sci 2024; 86:381-388. [PMID: 38369331 PMCID: PMC11061573 DOI: 10.1292/jvms.23-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
Sensorineural hearing loss (SNHL) induced by noise has increased in recent years due to personal headphone use and noisy urban environments. The study shows a novel model of gradually progressive SNHL induced by repeated exposure to moderate noise (8-kHz octave band noise, 90-dB sound pressure level) for 1 hr exposure per day in BALB/cCr mice. The results showed that the repeated exposure led to gradually progressive SNHL, which was dependent on the number of exposures, and resulted in permanent hearing loss after 5 exposures. Repeated exposure to noise causes a loss of synapses between the inner hair cells and the peripheral terminals of the auditory nerve fibers. Additionally, there is a reduction in the expression levels of c-fos and Arc, both of which are indicators of cochlear nerve responses to noise exposure. Oral administration of resveratrol (RSV, 50 mg/kg/day) during the noise exposure period significantly prevented the noise exposure-induced synapse loss and SNHL. Furthermore, the study found that RSV treatment prevented the noise-induced increase in the gene expression levels of the proinflammatory cytokine interleukin-1β in the cochlea. These results demonstrated the potential usefulness of RSV in preventing noise-induced SNHL in the animal model established as gradually progressive SNHL.
Collapse
Affiliation(s)
- Taro YAMAGUCHI
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Masanori YONEYAMA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Yusuke ONAKA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Kiyokazu OGITA
- Faculty of Pharmaceutical Sciences, Setsunan University,
Osaka, Japan
| |
Collapse
|
6
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
7
|
Lazzeri G, Biagioni F, Ferrucci M, Puglisi-Allegra S, Lenzi P, Busceti CL, Giannessi F, Fornai F. The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes. Int J Mol Sci 2023; 24:16664. [PMID: 38068993 PMCID: PMC10706730 DOI: 10.3390/ijms242316664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Stefano Puglisi-Allegra
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Francesco Giannessi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
8
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
9
|
Wang X, Zhou Z, Yu C, He K, Sun L, Kou Y, Zhang M, Zhang Z, Luo P, Wen L, Chen G. A prestin-targeting peptide-guided drug delivery system rearranging concentration gradient in the inner ear: An improved strategy against hearing loss. Eur J Pharm Sci 2023; 187:106490. [PMID: 37295658 DOI: 10.1016/j.ejps.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Hearing loss is mainly due to outer hair cell (OHC) damage in three cochlear turns. Local administration via the round window membrane (RWM) has considerable otological clinical potential in bypassing the blood-labyrinth barrier. However, insufficient drug distribution in the apical and middle cochlear turns results in unsatisfactory efficacy. We functionalized poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) with targeting peptide A665, which specifically bound to prestin, a protein uniquely expressed in OHCs. The modification facilitated the cellular uptake and RWM permeability of NPs. Notably, the guide of A665 towards OHCs enabled more NPs perfusion in the apical and middle cochlear turns without decreasing accumulation in the basal cochlear turn. Subsequently, curcumin (CUR), an appealing anti-ototoxic drug, was encapsulated in NPs. In aminoglycoside-treated guinea pigs with the worst hearing level, CUR/A665-PLGA NPs, with superior performance to CUR/PLGA NPs, almost completely preserved the OHCs in three cochlear turns. The lack of increased low-frequencies hearing thresholds further confirmed that the delivery system with prestin affinity mediated cochlear distribution rearrangement. Good inner ear biocompatibility and little or no embryonic zebrafish toxicity were observed throughout the treatment. Overall, A665-PLGA NPs act as desirable tools with sufficient inner ear delivery for improved efficacy against severe hearing loss.
Collapse
Affiliation(s)
- Xinrui Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Sun
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuwei Kou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Kuwabara Y, Hirose A, Lee H, Kakinuma T, Baba A, Takara T. Effects of Highly Bioavailable Curcumin Supplementation on Common Cold Symptoms and Immune and Inflammatory Functions in Healthy Japanese Subjects: A Randomized Controlled Study. J Diet Suppl 2023; 21:71-98. [PMID: 36927282 DOI: 10.1080/19390211.2023.2185723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to investigate the effects of 12-week consumption of highly bioavailable curcumin (150 mg/day of Theracurmin Super [TS-P1] or Theracurmin [CR-033P]) on common cold symptoms, immune function, and inflammatory markers. A randomized, double-blind, placebo-controlled study was conducted from November 2021 to May 2022 on 99 healthy Japanese adults. Using a computerized random number generator, each subject was randomly assigned to one of the following three groups: TS-P1, CR-033P, or placebo (n = 33 per group). For 12 weeks, each group consumed the four capsules that were given to them daily. The cumulative number of days for which common cold symptoms persisted was set as the primary outcome. Immunity parameters, inflammatory parameters, liver function parameters, and physical examination results were additional outcomes. A safety assessment was also performed. Ninety-four subjects completed the study, and the per protocol set included 30 subjects in the placebo group, 32 subjects in the TS-P1 group, and 33 subjects in the CR-033P group. The cumulative number of days for which common cold symptoms persisted was significantly lower in the TS-P1 and CR-033P groups than that in the placebo group. No adverse effects were observed. Consumption of highly bioavailable curcumin, TS-P1 or CR-033P (150 mg/day), for 12 weeks reduced the number of days for which common cold symptoms persisted in healthy Japanese adults.
Collapse
|
11
|
Approaches to Mitigate Mitochondrial Dysfunction in Sensorineural Hearing Loss. Ann Biomed Eng 2022; 50:1762-1770. [PMID: 36369597 DOI: 10.1007/s10439-022-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria are highly dynamic multifaceted organelles with various functions including cellular energy metabolism, reactive oxygen species (ROS) generation, calcium homeostasis, and apoptosis. Because of these diverse functions, mitochondria are key regulators of cell survival and death, and their dysfunction is implicated in numerous diseases, particularly neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. One of the most common neurodegenerative disorders is sensorineural hearing loss (SNHL). SNHL primarily originates from the degenerative changes in the cochlea, which is the auditory portion of the inner ear. Many cochlear cells contain an abundance of mitochondria and are metabolically highly active, rendering them susceptible to mitochondrial dysfunction. Indeed, the causal role of mitochondrial dysfunction in SNHL progression is well established, and therefore, targeted for treatment. In this review, we aim to compile the emerging findings in the literature indicating the role of mitochondrial dysfunction in the progression of sensorineural hearing loss and highlight potential therapeutics targeting mitochondrial dysfunction for hearing loss treatment.
Collapse
|
12
|
Protective Effects of Curcumin and N-Acetyl Cysteine Against Noise-Induced Sensorineural Hearing Loss: An Experimental Study. Indian J Otolaryngol Head Neck Surg 2022; 74:467-471. [PMID: 36032833 PMCID: PMC9411444 DOI: 10.1007/s12070-020-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022] Open
Abstract
We investigated the effectiveness of N-acetyl cysteine (NAC) and curcumin, which have known antioxidant and anti-inflammatory effects, in reducing acoustic trauma. We randomly divided 40 adult male rats into four groups: a control group (group 1), a curcumin group (group 2), a NAC group (group 3), and an ethyl alcohol group (group 4). The rats were exposed to 110 dB sound at a frequency of 4 kHz for 2 h to simulate acoustic trauma. Group 1, group 2, group 3, and group 4 received 1 ml saline, 200 mg/kg curcumin, 350 mg/kg NAC, or 1 ml ethyl alcohol, respectively, intraperitoneally 30 min before and 24 and 48 h after acoustic trauma. Distortion product otoacoustic emissions (DPOAEs) were recorded before and after the acoustic trauma, and 72 h after drug administration. In group 2, signal-to-noise ratio (SNR) values in frequencies of 1000 Hz, 1500 Hz, and 4000 Hz decreased in the second measurements when compared to the first, and showed improvements in the third measurements in comparison to the second ones. In group 3, SNR values decreased in the second measurements, but only the values at 6000 Hz were found to be statistically significant (p = 0.007). The values in the third measurements were statistically significant when compared to the second ones. There was a statistically significant difference in the third measurements in both groups 2 and 3, possibly due to curcumin and NAC treatment. This study showed that curcumin and NAC may be effective against noise-induced hearing loss.
Collapse
|
13
|
Haryuna TSH, Amellya D, Munir D, Zubaidah TSH. The Benefits of Curcuminoid to Expression Nuclear Factor Erythroid 2 Related Factor 2 (NRF2) and Signal to Noise Ratio (SNR) Value in the Noise Exposed Organ of Corti of Rattus Norvegicus. Rep Biochem Mol Biol 2021; 10:373-379. [PMID: 34981013 PMCID: PMC8718775 DOI: 10.52547/rbmb.10.3.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) can cause damage to the cochlea. Curcumin and nuclear factor erythroid 2-related factor 2 (NRF2) are transcription activators that play a crucial role in defence mechanisms against oxidative stress. The aim of this study was to determine the effect of curcuminoid administration on NRF2 expression, in the organ of Corti of cochlea of Rattus norvegicus that were exposed to noise, from the results of the distortion product otoacoustic emission (DPOAE) examination. METHODS We divided 36 rats into six groups including Group 1 (control); Group 2 (noise exposure without curcuminoid administration); Group 3 (noise exposure+curcuminoid dose 100 mg/day for four days); Group 4 (noise exposure+curcuminoid dose 200 mg/day for four days); Group 5 (curcuminoid dose of 100 mg/day for 14 days followed by two days of noise exposure); Group 6 (curcuminoid dose 200 mg/day for 14 days followed by two days of noise exposure). RESULTS Following noise exposure in rats, there was an effect/correlation between NRF2 expression, the SNR values obtained from DPOAE and curcuminoid administration. CONCLUSION There was a correlation between curcuminoid administration, NRF2 expression and DPOAE treatment. Following noise exposure in rats (Rattus norvegicus), SNR values obtained from DPOAE showed improved cochlear function.
Collapse
Affiliation(s)
- Tengku Siti Hajar Haryuna
- Department of Otorhinolaryngology, Faculty of medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia.
| | - Diana Amellya
- Department of Otorhinolaryngology, Faculty of medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia.
| | - Delfitri Munir
- Department of Otorhinolaryngology, Faculty of medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia.
| | - Tengku Siti Harilza Zubaidah
- Department of Ophtalmology, Faculty of medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia.
| |
Collapse
|
14
|
Taneja MK. Prevention and Rehabilitation of Old Age Deafness. Indian J Otolaryngol Head Neck Surg 2020; 72:524-531. [PMID: 33088786 DOI: 10.1007/s12070-020-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
Hearing impairment is one of the most common sensory deficit affecting 466 million people globally and in majority of old age people it can not corrected. Since presbycusis is always associated with diminished cognition power resulting in two fold loss in understanding of speech. There is no treatment available till date to regenerate the hair cells but certainly we can augment hearing by preventing and regenerating (apoptosis) atrophy of stria vascularis, spiral neural cells degeneration, atrophy of auditory nerve and cerebral cortex by modified greeva, skandh chalan, dynamic neurobics, tratak (focused concentration), Bhramari, Kumbhak along with mindful relaxation technique.
Collapse
Affiliation(s)
- M K Taneja
- Indian Institute of Ear Diseases, E-982 C. R. Park, New Delhi, India
| |
Collapse
|
15
|
Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020; 15:1457-1471. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Miryam Calvino
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| | - Rafael Cediel
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Animal Medicine and Surgery, Complutense University of Madrid , Madrid, Spain
| | - Luis Lassaletta
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| |
Collapse
|
16
|
Adachi S, Hamoya T, Fujii G, Narita T, Komiya M, Miyamoto S, Kurokawa Y, Takahashi M, Takayama T, Ishikawa H, Tashiro K, Mutoh M. Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors. Cancer Sci 2020; 111:1367-1374. [PMID: 31991021 PMCID: PMC7156816 DOI: 10.1111/cas.14329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Therefore, it is important to establish useful methods for preventing CRC. One prevention strategy involves the use of cancer chemopreventive agents, including functional foods. We focused on the well‐known cancer chemopreventive agent curcumin, which is derived from turmeric. However, curcumin has the disadvantage of being poorly soluble in water due to its high hydrophobicity. To overcome this problem, the formation of submicron particles with surface controlled technology has been applied to curcumin to give it remarkably improved water solubility, and this derived compound is named Theracurmin. To date, the preventive effects of Theracurmin on hereditary intestinal carcinogenesis have not been elucidated. Thus, we used Apc‐mutant mice, a model of familial adenomatous polyposis, to evaluate the effects of Theracurmin. First, we showed that treatment with 10‐20 µM Theracurmin for 24 hours reduced nuclear factor‐κB (NF‐κB) transcriptional activity in human colon cancer DLD‐1 and HCT116 cells. However, treatment with curcumin mixed in water did not change the NF‐κB promoter transcriptional activity. As NF‐κB is a regulator of inflammation‐related factors, we next investigated the downstream targets of NF‐κB: monocyte chemoattractant protein‐1 (MCP‐1) and interleukin (IL)‐6. We found that treatment with 500 ppm Theracurmin for 8 weeks inhibited intestinal polyp development and suppressed MCP‐1 and IL‐6 mRNA expression levels in the parts of the intestine with polyps. This report provides a proof of concept for the ongoing Theracurmin human trial (J‐CAP‐C study).
Collapse
Affiliation(s)
- Saeko Adachi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan.,Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushuu University, Fukuoka, Japan
| | - Takahiro Hamoya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Masami Komiya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Shingo Miyamoto
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yurie Kurokawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Maiko Takahashi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Faculty of Medicine Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushuu University, Fukuoka, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan.,Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2019; 185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Hearing disorders constitute one of the major health concerns in the USA. Decades of basic and clinical studies have identified numerous ototoxic agents and investigated their modes of action on the inner ear, utilizing tissue culture as well as animal and human models. Current preventive and therapeutic approaches are considered unsatisfactory. Therefore, additional modalities should be developed. Many studies suggest that increased levels of oxidative stress, chronic inflammation, and glutamate play an important role in the initiation and progression of damage to the inner ear leading to hearing impairments. To prevent these cellular deficits, antioxidants, anti-inflammatory agents, and antagonists of glutamate receptor have been used individually or in combination with limited success. It is essential, therefore, to simultaneously enhance the levels of antioxidant enzymes by activating the Nrf2 (a nuclear transcriptional factor) pathway, dietary and endogenous antioxidant compounds, and B12-vitamins in order to reduce the levels of oxidative stress, chronic inflammation, and glutamate at the same time. This review presents evidence to show that increased levels of these cellular metabolites, biochemical or factors are involved in the pathogenesis of cochlea leading to hearing impairments. It presents scientific rationale for the use of a mixture of micronutrients that may decrease the levels of oxidative damage, chronic inflammation, and glutamate at the same time. The benefits for using oral administration of proposed micronutrient mixture in humans are presented. Animal and limited human studies indirectly suggest that orally administered micronutrients can accumulate in the inner ear. Therefore, this route of administration may be useful in prevention, and in combination with standard care, in improved management of hearing problems following exposure to well-recognized and studied ototoxic agents, such as noise, cisplatin, aminoglycoside antibiotics, and advanced age.
Collapse
Affiliation(s)
- Kadar N Prasad
- Engage Global, 245 El Faisan Drive, San Rafael, CA, 94903, United States.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, 92697-1830, United States
| |
Collapse
|
18
|
Evidence Supporting the Hypothesis That Inflammation-Induced Vasospasm Is Involved in the Pathogenesis of Acquired Sensorineural Hearing Loss. Int J Otolaryngol 2019; 2019:4367240. [PMID: 31781229 PMCID: PMC6875011 DOI: 10.1155/2019/4367240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Sensorineural hearing loss is mainly acquired and affects an estimated 1.3 billion humans worldwide. It is related to aging, noise, infection, ototoxic drugs, and genetic defects. It is essential to identify reversible and preventable causes to be able to reduce the burden of this disease. Inflammation is involved in most causes and leads to tissue injury through vasospasm-associated ischemia. Vasospasm is reversible. This review summarized evidence linking inflammation-induced vasospasm to several forms of acquired sensorineural hearing loss. The link between vasospasm and sensorineural hearing loss is directly evident in subarachnoid haemorrhage, which involves the release of vasoconstriction-inducing cytokines like interleukin-1, endothelin-1, and tumour necrosis factor. These proinflammatory cytokines can also be released in response to infection, autoimmune disease, and acute or chronically increased inflammation in the ageing organism as in presbyacusis or in noise-induced cochlear injury. Evidence of vasospasm and hearing loss has also been discovered in bacterial meningitis and brain injury. Resolution of inflammation-induced vasospasm has been associated with improvement of hearing in autoimmune diseases involving overproduction of interleukin-1 from inflammasomes. There is mainly indirect evidence for vasospasm-associated sensorineural hearing loss in most forms of systemic or injury- or infection-induced local vascular inflammation. This opens up avenues in prevention and treatment of vascular and systemic inflammation as well as vasospasm itself as a way to prevent and treat most forms of acquired sensorineural hearing loss. Future research needs to investigate interventions antagonising vasospasm and vasospasm-inducing proinflammatory cytokines and their production in randomised controlled trials of prevention and treatment of acquired sensorineural hearing loss. Prime candidates for interventions are hereby inflammasome inhibitors and vasospasm-reducing drugs like nitric oxide donors, rho-kinase inhibitors, and magnesium which have the potential to reduce sensorineural hearing loss in meningitis, exposure to noise, brain injury, arteriosclerosis, and advanced age-related and autoimmune disease-related inflammation.
Collapse
|
19
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|